
Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

Unimal 2.1
Application note 8

Implementing complex string algorithms at compile
time

Documentation revision 2.1.1

Techniques:
Representation of pre-defined encoding of strings in predefined charset
Generating tree-like structures and recursive macro expansion
Generating a containing superstring and multi-suffix composite names
Pretty-formatting the output

MacroExpressions
http://www.macroexpressions.com

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

1

Table of contents
FOREWORD ...1

REPRESENTATION OF PRE-DEFINED ENCODING OF STRINGS1

PRETTY PRINTING... 5

TREES AND RECURSIVE MACRO EXPANSIONS ...6

CONSTRUCTING A CONTAINING STRING WITH UNIMAL ... 10

OUTLINE OF THE ALGORITHM... 10
STEP 1: ELIMINATING THE SUBSTRINGS.. 11
STEP 2: COMPUTING THE STRINGS OVERLAP INFORMATION ... 13
STEP 3: MERGING THE STRINGS INTO A SUPERSTRING... 15
STEP 4: GENERATING THE C TABLES ... 18

Foreword
This Application Note deals with non-trivial string-related algorithms which, given constant
data, can be executed at compile time.

First, we consider how to encode a string into a pre-defined character map, such as provided
by the character generator built in a device. One can find similarities between this and a
technique used in Application Note 5 to convert a string-valued macro parameter to an upper-
case string.

Second, we’ll develop a technique of generating output with better formatting.

Third, we will generate a simple tree representation of a collection of strings. This will be an
excuse to elaborate on recursive macro expansion in Unimal.

Finally, we’ll undertake a rather formidable task of building a containing superstring for a
collection of strings using a variation of a commonly used greedy algorithm. This will provide
a practical illustration of the use of composite names with more than one suffix.

Examples for this Note are in the directory Samples\AppNotes\8.

Representation of pre-defined encoding of strings
Consider a problem of outputting a readable string to a device with its own character
generator. You send it a byte and it draws a character coded with this byte. This encoding is
likely to include ASCII but it doesn’t have to; it may include other characters as well.

An example of such a device is Sitronix ST7036 LCD controller
(http://www.sitronix.com.tw/sitronix/SASpecDoc.nsf/FileDownload/ST70361542382/$FILE/ST
7036-V1_6.pdf) with one of its several character maps shown below just for illustration.

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

2

It contains the printable subset of ASCII, Kana characters, some Western European and
Greek characters and some math and special characters.

How do we define a string with this encoding?

We begin with defining the 256 single-character strings, so that we can concatenate them
later to make arbitrary strings.

For characters in the Unimal names set (_, A-Z, a-z, 0-9), a solution is to code the encoding
directly, like
#MP LETTER_k = 0x6B
#MP LETTER_K = 0x4B
(Note that the equal sign is optional.) Recall that the [] in this context makes a single-byte
string with the byte encoded by the least significant byte of the number in brackets.
Here are some more:
#MP LETTER_S = 0x53

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

3

#MP LETTER_T = 0x54
#MP LETTER_0 = 0x30
#MP LETTER_3 = 0x33
#MP LETTER_6 = 0x36
#MP LETTER_7 = 0x37

Now, incidentally, we are in a position to encode the string “ST7036”:
#MP Setstr s = “ST7036”
#MP Setstr result = “”
#MP For i=0, Ustrlen(s)-1
#MP Setstr t = {uSubstr,s,i,i+1} ;`character’ #i of original string
#MP Setstr result = result + [LETTER_%st]
#MP Endfor

This simple example is in the file encode1.u which prints s and result as strings using
s="#mp%ss"
result="#mp%sresult"

If your system contains ASCII encoding, the printed result is
s="ST7036"
result="ST7036"

We’ve built result byte by byte by replacing the desktop encoding (ASCII, EBCDIC or
anything else) to the ST7036 controller encoding.

But what about characters that are illegal in Unimal names, like e.g. a space or parentheses?
We cannot have something like
#MP LETTER_(= 0x28 ;wrong!

Recall that any characters are valid in a Unimal name; just not all characters may appear
graphically like in the example below. So, we can use a two-step solution, like so:
#MP Setstr _LPAREN_ “(“
#MP LETTER_%s_LPAREN_ = 0x28
#MP Setstr _SPACE_ “ “
#MP LETTER_%s_SPACE_ = 0x20

Now, what about other characters which may not even be in the character set of your
programmer’s editor (arrows, Kana, Greek etc.)? To approach this problem, we have to
decide how the original strings with those characters could be presented.

Perhaps the most natural way is to use symbolic names for those characters and use C-style
literal string concatenation like so:
#MP Setstr say = _sqroot_ “ is math, “ _theta_ “ Greek, “ _TSU_ “ Japanese”

If we adopt this method of presentation, it doesn’t really matter how exactly the symbolic
names are defined; we can define them for instance with the target encoding:
#MP Setstr _sqroot_ = [254] ;a decimal for a change
#MP Setstr _theta_ = [0x16]
#MP Setstr _TSU_ = [0xC2]

Now we can define the letters:
#MP Setstr LETTER_%s_sqroot_ = [254] ;a decimal for a change

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

4

#MP Setstr LETTER_%s_theta_ = [0x16]
#MP Setstr LETTER_%s_TSU_ = [0xC2]
It begins looking tautological but there is nothing wrong with this.

Many (but not all) of the 256 letter definitions of this kind can be found in the file st.inc

Now that we can convert a string to a target encoding, how do we output it to the
preprocessing result? It makes sense to output a string as a sequence (array) of encoding
bytes for the target language to have an object ready for output.

The following macro (see encode2.u) does the job for C:
1. #MP Macro PrintStringAsHex ;(encoded-string)
2. #MP For i=0,Ustrlen(#1#)-1
3. #MP Setstr letter = {uSubstr, #1#, i, i+1}
4. #MP letter = LETTER_%sletter
5. 0x#mp%02xletter,
6. #MP Endfor
7. #MP Endm

Line 5 prints a C-style initialization with a hex code defined by a single-character substring.

By the way, encode2.u also contains a generic macro to encode a string in a fashion we
encoded “ST7036” earlier in this section:
1. #MP Macro EncodeString
2. #MP Setstr result = ""
3. #MP For i=0, Ustrlen(#1#)-1
4. #MP Setstr t = {uSubstr,#1#,i,i+1} ;`character' #i of the original
5. #MP Setstr result = result + [LETTER_%st]
6. #MP Endfor
7. #MP Endm

A test looks like this:
const unsigned char one[]=
{
#MP Encode("ST7036")
#MP PrintStringAsHex(result)
};
const unsigned char two[]=
{
#MP Setstr S _sqroot_ "4 = 2"
#MP EncodeString(S)
#MP PrintStringAsHex(result)
};

Here is the test output which has the ST7036 the encoding regardless of the character
encoding in a programmer’s editor:
const unsigned char one[]=
{
 0x53,
 0x54,
 0x37,
 0x30,

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

5

 0x33,
 0x36,
};
const unsigned char two[]=
{
 0xfe,
 0x34,
 0x20,
 0x3d,
 0x20,
 0x32,
};

One could notice that there is no point to encode an input string only to tear the result
apart again to produce the output. That is true, and the two macros can be combined; we’ll
keep them separate because we will soon manipulate the strings before any output is
produced.

Pretty printing
When a string is long, the kind of output we produced is ugly. Consider replacing the string S
in encode2.u like this:
const unsigned char two[]=
{
#MP Setstr S _sqroot_ "4 = 2. There is no limit to the power of math!”
#MP EncodeString(S)
#MP PrintStringAsHex(result)
};

The output contains 47 lines, one line per character. Things get unreadable very quickly. We
need a prettier output mechanism to print several bytes on a line.

We want to replace the macro PrintStringAsHex with some
PrettyPrintStringAsHex which can be given the number of bytes per line (see
encode3.u). The plan is to pre-assemble an output line and then just dump it with the %s
format. Here is an implementation:

1. #MP Macro PrettyPrintStringAsHex ;(encoded-string, bytes-per-line)
2. #MP Set line 0
3. #MP Repeat
4. #MP index = line*#2#
5. #MP Setstr line = ""
6. #MP For b = 0, #2#-1
7. #MP ix = index + b
8. #MP Setstr let = {uSubstr, #1#, ix, ix+1}
9. #MP If Ustrlen(let) == 0
10. #MP b = #2# ;break the loop
11. #MP Else
12. #MP let = LETTER_%slet
13. #MP Setstr line = line + "0x" + {%02xlet} + ","
14. #MP Endif
15. #MP Endfor

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

6

16. /*[#mp%03uindex]*/ #mp%sline
17. #MP Set line line+1
18. #MP While Ustrlen(let) != 0
19. #MP Endm

In this macro, line has a numeric value – the line number – and a string value – the content
of the output line. The parameter index is the index of the first byte on the line (see line 4
above).
In the code above, line 16 outputs this index in a C comment (this goes to the category of a
cherry on top), followed by the assembled line string.
This output occurs while the character let extracted from the encoded string is non-empty
(see lines 2, 3, 17, 18). When let is empty, the input string is exhausted and the output is
completed.
Lines 5-15 assemble an output line by extracting and processing non-empty characters
(let) of the input string one by one. The assembly terminates when enough bytes are added
(line 15) or when the input string ends (line 10). The actual assembly happens in line 13;
%02xlet is a composite name representing the two hex digits of let, and enclosing a name
in braces converts it to a string with the value of the name. This explains line 13 (see also
Application Note 5).

Now let’s process the code in the beginning of this section with a printing replacement
(encode3.u):
const unsigned char two[]=
{
#MP Setstr S _sqroot_ "4 = 2. There is no limit to the power of math!”
#MP EncodeString(S)
#MP PrettyPrintStringAsHex(result, 10) ;10 bytes per line
};

Here is the output, which is much more compact:
const unsigned char two[]=
{
 /*[000]*/ 0xfe,0x34,0x20,0x3d,0x20,0x32,0x2e,0x20,0x54,0x68,
 /*[010]*/ 0x65,0x72,0x65,0x20,0x69,0x73,0x20,0x6e,0x6f,0x20,
 /*[020]*/ 0x6c,0x69,0x6d,0x69,0x74,0x20,0x74,0x6f,0x20,0x74,
 /*[030]*/ 0x68,0x65,0x20,0x70,0x6f,0x77,0x65,0x72,0x20,0x6f,
 /*[040]*/ 0x66,0x20,0x6d,0x61,0x74,0x68,0x21,
};

Trees and Recursive Macro Expansions
There are many text processing algorithms based on tree-like data structures. The most
elegant ways of building trees of various sorts are based on recursive calls. The purpose of
this section is to implement a simple compile-time tree-building algorithm in Unimal and to
discuss how recursion is treated in Unimal.

When the text is constant, it has a lot of merits to construct the relevant data structures at
compile time. This section illustrates the ways of doing this job with Unimal.

We will consider a very simple tree data structure: a node is tagged with a character and
references its parent node; the root node has an empty reference.

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

7

Such a tree can store a collection of strings with a help of an extra array of references to the
tree nodes: a string is a sequence of tags encountered in walking the tree from the
referenced node to the root.

Our task will be to construct such a tree representing a given collection of strings.

The data design is as follows:
 The tree itself will be represented by a pair of arrays:

const unsigned char tree_letters[], and
const unsigned short tree_parents[].
They are indexed by the same index; tree_letters[i] is the letter tag of the
node and tree_parents[i] is the index of the parent node. By convention, index 0
corresponds to the root of the tree.

 Strings in the collection we build the tree from are enumerated in the order of
appearance. They produce an array,
const unsigned short name_index[],
indexed by the string number. The value of name_index[n] is the index (in
tree_letters and tree_parents) of the node corresponding to (the first letter
of) the string n.

 For readability, C99-style designated initializers and sensible comments will be
generated as appropriate

Let’s assume that Unimal somehow got the following parameters computed:
 Lindex – the number of strings in the collection
 Tindex – the number of nodes in the tree
 For each t = 0, …, Tindex – 1,

NODELETTER_%dt has a string value of the character tag of the node, and a numeric
value of the encoding of the character;
PARENT_%dt has a numeric value of the parent index of the node t, and a string
value of the (suffix) string resulting from walking up the tree from the parent node (for
comments only)

Then generating the tree representation is a standard fare (see tree.u)
const unsigned short name_index[#mp%dLindex] =
{
#MP For i=0, Lindex-1
 [#mp%di] = #mp%dLINDEX_%di, //link to "#mp%sLINDEX_%di"
#MP Endfor
};

const unsigned char tree_letters[#mp%dTindex] = {
#MP For t=0, Tindex-1
 [#mp%dt] = #mp%dNODELETTER_%dt, //letter "#mp%sNODELETTER_%dt"
#MP Endfor
};

const unsigned short tree_parents[#mp%dTindex] = {
#MP For t=0, Tindex-1
 [#mp%dt] = #mp%dPARENT_%dt, //link to "#mp%sPARENT_%dt"
#MP Endfor
};

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

8

The strings are defined using the yet-to-be-defined macro AddString, e.g.
#MP AddString("good")
#MP AddString("mood")
#MP AddString("bad")
#MP AddString("fad")
#MP AddString("good")

The macro AddString might take the form (see the file tree.inc)
1. #MP Macro AddString ;(string)
2. #MP AddSuffix(#1#)
3. #MP LINDEX_%dLindex = TINDEX_%s#1#
4. #MP Setstr LINDEX_%dLindex = #1# ;for generated comments
5. #MP Lindex = Lindex+1
6. #MP Endm

The macro AddSuffix in line 2 (again, yet to be defined) the actual work, and lines 3-5 do
the housekeeping. The numeric value of TINDEX_%s<string> is the tree node index
corresponding to the <string>. It should come out from AddSuffix.

Of course, we need to initialize the root node values and the string counter. This is done
(quite sloppily) in the beginning of tree.inc, so it is executed every time the file is
included:
#MP Lindex = 0 ;String index
#MP ;Manually put in the empty string
#MP Tindex = 0
#MP TINDEX_ = 0 ;index of the empty string

Now, AddSuffix:
1. #MP Macro AddSuffix ;[string]
2. #MP If !Defined(TINDEX_%s#1#)
3. #MP Setstr Remainder = {uSubstr, #1#, 1, Ustrlen(#1#)}
4. #MP If Ustrlen(Remainder) != 0
5. #MP AddSuffix[{%sRemainder}]
6. #MP Setstr Remainder = {uSubstr, #1#, 1, Ustrlen(#1#)}
7. #MP Endif
8. #MP PARENT_%dTindex = TINDEX_%sRemainder
9. #MP Setstr PARENT_%dTindex = Remainder ;for comments only
10. #MP Setstr let = {uSubstr, #1#, 0, 1}
11. #MP Setstr NODELETTER_%dTindex = let
12. #MP NODELETTER_%dTindex = LETTER_%slet
13. #MP TINDEX_%s#1# = Tindex
14. #MP Tindex = Tindex + 1
15. #MP Endif
16. #MP Endm

It is to discuss this macro that this section has been added.
First of all, line 2 checks whether the string to add is already in the tree (as a previously
added string or as a suffix of a previously added string). If it is so, there is nothing to do;
otherwise, lines 3-14 do the processing.

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

9

Line 3 computes the remainder (suffix) of the string. If it is non-empty (line 4) then line 5
adds the remainder (recursively!) and line 6 re-computes the remainder since it will have
been corrupted in recursive expansion of AddSuffix.
Lines 8-14 do compute the parameters we defined previously, with first letter extraction and
translation done much like in the previous section.

Let’s discuss lines 5-6 in more detail.

If we run tree.u, the output is verifiably correct:
const unsigned short name_index[5] =
{
 [0] = 3, //link to "good"
 [1] = 4, //link to "mood"
 [2] = 6, //link to "bad"
 [3] = 7, //link to "fad"
 [4] = 3, //link to "good"
};

const unsigned char tree_letters[8] = {
 [0] = 100, //letter "d"
 [1] = 111, //letter "o"
 [2] = 111, //letter "o"
 [3] = 103, //letter "g"
 [4] = 109, //letter "m"
 [5] = 97, //letter "a"
 [6] = 98, //letter "b"
 [7] = 102, //letter "f"
};

const unsigned short tree_parents[8] = {
 [0] = 0, //link to ""
 [1] = 0, //link to "d"
 [2] = 1, //link to "od"
 [3] = 2, //link to "ood"
 [4] = 2, //link to "ood"
 [5] = 0, //link to "d"
 [6] = 5, //link to "ad"
 [7] = 5, //link to "ad"
};

If we replace line 5 with
#MP AddSuffix({%sRemainder})
(The only difference is that the argument is passed in parentheses instead of in brackets), the
output is wrong and contains error messages like
MP:S2022:tree.inc:10 Recursive use of macro AddSuffix; ignored (use [])
MP:S2011:tree.inc:13 Undefined parameter TINDEX_ood; default assumed
MP:S2011:tree.inc:13 Undefined parameter TINDEX_ad; default assumed

The first error message is of interest: Unimal refused to expand the macro. Other errors are
induced since the algorithm didn’t execute correctly. So, what’s the deal here?

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

10

Unimal macros may have unbalanced block elements (If/Else/Endif, For/Endfor,
Repeat/While); part of a block may be in one macro, another part in another macro or
outside any macro at all. The implication is that Unimal must expand a macro even in a false
block, in an attempt to locate an unbalanced block keyword. This causes any recursive macro
call to result in infinite recursion. Unimal would chug along until it runs out of memory, and so
it was prior to version 2.1. Beginning with version 2.1, Unimal detects recursion, whether
direct or mutual, and refuses to expand the offending macro.
By passing the argument(s) in square brackets, the code tells Unimal that the macro is
balanced and should not be expanded in a false block. This allows correct recursion to be
implemented, as we saw in the example. If you lied to Unimal and in fact the macro is not
balanced, the unbalanced keywords there will not be found and the corresponding error
messages will be produced.

Now, what is the argument that is passed to AddSuffix in the recursive call in line 5? It is a
string expression whose value is that of Remainder – a copy of Remainder, in other
words. But why do we need to pass a copy instead of Remainder itself? The answer is
simple: The next (recursive, i.e. nested) instance of AddSuffix expansion will corrupt
Remainder before it was used as the passed argument. This also explains line 6 where
Remainder is computed again on return from recursive expansion.

Constructing a containing string with Unimal
The goal of this section is to demonstrate how Unimal can be useful in implementing a
computationally complex algorithm. It becomes necessary to pay attention to the efficiency of
the preprocessing algorithm.

We want to save some space for storing a set of constant strings by creating a constant
(super)string containing all strings in the set as substrings. A string in the set is defined then
by its index into the superstring and its length.

Outline of the Algorithm
Computing the shortest superstring is at least NP-hard and thus computationally intractable.
However, the greedy algorithm is known to produce a superstring at most twice as long as
optimal, and usually a lot better than that. It is considered a good practical technique.

We will implement the following flavor of it:
1. (Preliminary step) Eliminate strings from the set such that they are already substrings

of some string(s) still in the set.
2. (Build the overlap info). For each (ordered) pair of strings in the set with non-empty

overlap, record the length of overlap.
3. Starting with the longest overlap, repeatedly merge the overlapping pairs into one

string.

Notice that steps 1-2 make the complexity of the algorithm quadratic on the number of
strings. Generally, the number of overlaps recorded in step 2 is also quadratic on the number
of strings, so step 3 has a quadratic number of merges. Strictly speaking, for each merge in
step 3, we need to repeat steps 1-2 for the pairs that include the new (merged) string. This is
linear on the (current) number of strings, which makes the overall merge process of step 3 of
cubic complexity. For a set of strings of any practical size, this is probably too much for any
interpreted language, including any preprocessor and thus including Unimal.

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

11

To make step 3 of quadratic complexity on the number of strings, we need to make an
individual merge operation of constant complexity. To do so, we make a shortcut: The new
string inherits overlap info from the left string and the right string that where merged. More
precisely, if we merged pair <i,j>, then

 The new string gets an index i so that all overlap info for pairs <k,i> remain valid,
and

 All overlap info for pairs <i,k> is replaced with overlap info for pairs <j,k>.

To accomplish the second requirement, we will maintain MergeBase[i] for each string index i.
Initially, MergeBase[i] = i; if we merge the pair <i,j> we assign MergeBase[i]=j.

There are (rare) cases where this simplification of the original greedy algorithm misses a
newly developed merge opportunity thus yielding a longer superstring than could be
achieved. In practice, however, the losses, if any, are small.

It is very cumbersome to keep track of where in the superstring a given string ends up being.
It is simpler to just find the string’s location once the superstring has been built.

Step 1: Eliminating the substrings
Like in the previous section where we were building a tree, the strings are defined using the
yet-to-be-defined macro AddString, e.g.
#MP AddString("stuff")
#MP AddString("foo")
#MP AddString("bar")
#MP AddString("foobar")
#MP AddString("baroque")
#MP AddString("queue")
#MP AddString("garb")
#MP AddString("stuff")

Our goal is to eliminate "foo" and "bar" as substrings of "foobar" and to eliminate one

copy of "stuff".

A new variant of AddString is simply collecting the data; it produces no output (see
super.inc):
1. #MP Macro AddString ;(string)
2. #MP Setstr STR_%dLindex = #1#
3. #MP Setstr STRx_%dLindex = #1#
4. #MP len = Ustrlen(#1#)
5. #MP If maxlen < len
6. #MP maxlen = len
7. #MP Endif
8. #MP Total = Total + len
9. #MP Lindex = Lindex+1
10. #MP Endm

Lines 2-3 make two copies of the supplied string indexed in the order of appearance: one for
manipulations related to building a superstring, the other for finding the index of the string in
the superstring.
Lines 4-6 keep track of the longest encountered string length; we will use it to estimate the
longest possible length of string overlaps.

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

12

Line 8 counts the total length of all strings (for statistics only).
Line 9 keeps track of the number of strings.

While eliminating substrings, we’ll also re-number them by moving the highest-numbered
string to the number of the removed strings. This will generally make the number of
remaining strings smaller and thus the algorithm to run faster.

The following lengthy macro does the job:

1. #MP Macro RemoveFluff ;()
2. #MP MaxIndex = Lindex - 1
3. #MP For i=0, MaxIndex
4. #MP For j=0, MaxIndex
5. #MP If i!=j
6. #MP Setstr dummy = {uSplit, STR_%uj, STR_%ui}
7. #MP If uSplit>=0
8. #MP If i != MaxIndex ;not last string: compact the array
9. #MP Setstr STR_%ui = STR_%uMaxIndex
10. #MP i = i - 1 ;force re-examining the same string index
11. #MP Endif
12. #MP Undef STR_%uMaxIndex
13. #MP MaxIndex = MaxIndex - 1
14. #MP j = Lindex ;break the inner loop
15. #MP Endif
16. #MP Endif
17. #MP Endfor
18. #MP If i>=MaxIndex
19. #MP i = Lindex ;(manually) break the (reduced) loop
20. #MP Endif
21. #MP Endfor
22. #MP Endm

Line 2: MaxIndex is the last index of a string; it will grow down when a string is removed.
Lines 3-21 examine whether string i must be deleted (and do the deletion). Since
MaxIndex can grow down, the normal loop termination is not sufficient (recall that the For
operator doesn’t re-evaluate the loop limit); so lines 18-20 provide manual end-of-loop
condition check. Note that in line 18 i indeed can be greater than MaxIndex, and that is if
when at line 8, i was equal to MaxIndex.

(This was a subtle and hard-to-detect bug in the previous version; a better implementation
altogether would be to remove lines 8 and 11. The worst that would happen is a string copied
to itself in line 9. No harm.)

Lines 4-17 do the work for the string i by examining each string j. Of course, a string is not
checked against itself (line 5).
Lines 6-7 check if string i is a substring of j (recall that uSplit gets a numeric value which is
negative if and only if the split didn’t occur, i.e. string j doesn’t contain string i.

If i is contained in j then lines 8-11 replace string i with the last string (provided that i itself
was not the last). Note that since string i changed, it must be evaluated again in the next
pass of the outer loop; line 10 ensures that.

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

13

Line 12 removes the last string: it was either removed (if i=MaxIndex) or copied to i and
became redundant. Correspondingly, line 13 decrements the max string index.
Once a containing string j has been found, there is no point in continuing search for it; so
line 14 terminates the inner loop.

To test this macro, we can output the remaining strings (see remove.u):
#MP RemoveFluff
#MP For i=0,MaxIndex
[#mp%ui] #mp%sSTR_%ui
#MP Endfor

The result is
[0] stuff
[1] garb
[2] queue
[3] foobar
[4] baroque

As you can see, the result is correct but the strings got rearranged.

Step 2: Computing the strings overlap information
First, let’s address an algorithmic issue: How do we compute the overlap of strings x and y,
i.e. the (longest) suffix of x which is also a prefix of y?
We could try all suffixes of x to fit a prefix of y, starting from the longest suffix. But that’s
quite slow.

A faster way is to find the first occurrence in x of the first letter of y. If such an occurrence
exists, the suffix of x starting at this occurrence is a candidate to try as a prefix of y. If it fits,
we are done; otherwise, replace x with its suffix just beyond the failed occurrence and repeat.
If no occurrence found, there is no overlap.

Returning to notation we developed so far, let FirstLetter be the first-letter substring of
STR_%ui:
#MP Setstr FirstLetter = {uSubstr, STR_%ui, 0, 1}

Here is a skeleton of Unimal code finding the longest overlap of str1 and str2=STR_%ui:
#MP Macro ComputeOverlap

1. #MP Repeat
2. #MP Setstr dummy = {uSplit, str1, FirstLetter}
3. #MP If uSplit>=0 ;match found
4. #MP Setstr str1 = {uSubstr, str1, str1-1, Total} ;match to test
5. #MP matchlen = Ustrlen(str1)
6. #MP Setstr dummy = {uSplit, str2, str1}
7. #MP If uSplit>=0 && matchlen == str2
8. #MP ProcessOverlap[]
9. #MP Else
10. #MP Setstr str1 = {uSubstr, str1, 1, Total}
11. #MP uSplit = -1 ; continue
12. #MP Endif
13. #MP uSplit = 1 ; break
14. #MP Endif

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

14

15. #MP While uSplit>=0
#MP Endm

Here, lines 1, 12 provide a loop over tries of different suffixes of str1.
Lines 2-3 check if FirstLetter (of str2) is found in str1; if so, the suffix is extracted
and tried.
At line 4, str1 has a numeric value of the length of the character of str1 just after the first
occurrence of FirstLetter, so line 4 extracts the suffix starting with FirstLetter.
Line 5 computes matchlen as the length of the extracted suffix (now str1).
Line 6 splits str2 by the suffix (str1). str2 gets the numeric value of the index in the string
str2 just after the first occurrence of str1, provided uSplit got a non-negative value.

We have an overlap found if uSPlit succeeds and matchlen equals to the index after split
(meaning that the match occurred at the beginning of str2, i.e. that str1 is a prefix of
str2).
Line 7 checks if we have an overlap and if so line 8 does some processing of it. Otherwise,
line 10 removes the first (matching) character from str1 making it ready for the next try.

Lines 11 and 13 fix the numeric value of uSplit to continue the loop if the overlap was not
found (verify that it’s correct!).

Note that the original str1 is destroyed during this process

To test this framework, we’ll execute it in a loop over all pairs of strings which result from
Step 1 (see overlap.u):
#MP For i=0, MaxIndex
#MP Setstr str2 = STR_%ui
#MP Setstr FirstLetter = {uSubstr, STR_%ui, 0, 1}
#MP For j=0, MaxIndex
#MP If i!=j
#MP Setstr str1 = STR_%uj
#MP ComputeOverlap[]
#MP Endif
#MP Endfor
#MP Endfor

For the required macro ProcessOverlap we’ll just print the left string, the length of the
overlap in parentheses and the right string:

#MP Macro ProcessOverlap
"#mp%sSTR_%uj" (#mp%umatchlen) "#mp%sSTR_%ui"
#MP Endm

Here is the test run of overlap.u:

"baroque" (3) "queue"
"stuff" (1) "foobar"
"garb" (1) "baroque"
"foobar" (3) "baroque"

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

15

Our next step is to define the macro ProcessOverlap to store the overlap info so as to
facilitate the greedy merge of the overlapped strings. It should be done together with the way
we accomplish the greedy merge, so we go on to

Step 3: Merging the strings into a superstring
First, we need to define some parameters (variables) that will assist us in the merge process.

Recall that according to the algorithm outline we want to merge STR_%ui and STR_%uj in a
new STR_%ui which has to inherit right-side merge information from STR_%uj. For that,
we’ll maintain MergeBase%ui for all i as a right-side “merge as” index.
Initially, MergeBase%ui = i (merge information comes from the overlaps computations of
the previous step); when we merge STR_%ui and STR_%uj, we assign
MergeBase%ui = MergeBase%uj.
To disqualify string j from being on the right side of a merge, we simply undefine STR_%uj.

Now, greedy merge requires that we merge strings with longest overlap first, so we need to
maintain the merge information somehow sorted by the overlap length.
There are many ways of doing it; we’ll choose the idea of “limited-height heap” best suited for
relatively short overlaps.
We will maintain, for each string i and each overlap length m,

 count_%08Xm%08Xi – the number of overlaps of length m with the string i on the
left. (We will not define these variables unless they are non-zero.)

 Assuming count_%08Xm%08Xi is defined (and thus non-zero), for each co between
0 and count_%08Xm%08Xi-1, we’ll define match%08Xm%08Xi%uco as the co-th
string found to overlap with string i as the right-hand side, and with the overlap
length m.

The following macro does greedy merging of all strings with overlap length matchlen:

1. #MP Macro MergeStrings
2. #MP For i = 0, MaxIndex
3. #MP Ifdef STR_%ui
4. #MP bm = MergeBase%ui
5. #MP If Defined(count_%08Xmatchlen%08Xbm)
6. #MP For co = 0, count_%08Xmatchlen%08Xbm-1
7. #MP j = match%08Xmatchlen%08Xbm%uco
8. #MP If j != i
9. #MP Ifdef STR_%uj ;then it's our best match: merge to i

i. #MP Setstr tail {uSubstr, STR_%uj, matchlen, Total}
ii. #MP Setstr STR_%ui = STR_%ui + tail ;new string
iii. #MP MergeBase%ui = MergeBase%uj
iv. #MP Undef STR_%uj
v. #MP co = 0x7fffffff ;break the inner loop
vi. #MP i = i-1 ;repeat with merged string

10. #MP Endif
11. #MP Endif
12. #MP Endfor
13. #MP Endif
14. #MP Endif
15. #MP Endfor

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

16

16. #MP Endm

Lines 2,3,15 arrange scanning of all strings that are still defined.
Line 4 gets the right context of the potential merge as described above.

Line 5 checks if there are any overlaps recorded and if so lines 6-9 find the first index j such
that STR_%uj is available for merging.

If a suitable string j is found, line (i) extracts its tail beyond the overlap, and line (ii)
appends it to the string i, which completes the merge. Line (iii) transfers the right-side
merge context information from string j to string i, and line (iv) undefines string j thus
removing it from further consideration.
If we did the merge, we have nothing to search for in the old string i right-side merge
context, so line (v) forces that loop to terminate. String i has changed, so it must be
evaluated again. That is ensured by line (vi) since line 15 will increment i.

The following simple macro wraps to make a greedy merge form longest to shortest overlap:
#MP Macro GreedyMerge
#MP For xx = 0, maxmatchlen-1
#MP matchlen = maxmatchlen – xx ;make it a descending order
#MP MergeStrings[]
#MP Endfor
#MP Endm

Now that we know how to do the greedy merge, we can go back to our debt to the previous
section and create the macro ProcessOverlap responsible for recording the overlap
information.
Recall that it is invoked whenever an overlap of length matchlen is found between string j
on the left and string i on the right.

1. #MP Macro ProcessOverlap
2. #MP count = 0
3. #MP Ifdef count_%08Xmatchlen%08Xj
4. #MP count = count_%08Xmatchlen%08Xj
5. #MP Endif
6. #MP match%08Xmatchlen%08Xj%ucount = i;
7. #MP count_%08Xmatchlen%08Xj = count + 1
8. #MP If matchlen > maxmatchlen
9. #MP maxmatchlen = matchlen
10. #MP Endif
11. #MP Endm

Lines 2-5 set count to the number of previously recorded overlaps of length matchlen with
the string j on the left. As usual, count is also the next available index.
Line 6 records the new overlap as being with string i.
Line 7 updates the number of recorded overlaps.
Lines 8-10 keep track of the maximum length of a recorded overlap; it is used in
GreedyMerge above to iterate over the range of overlap lengths.

To put it all together, we need to initialize maxmatchlen and all MergeBase%ui; and
complete the wrapper around ComputeOverlap to cover all strings. We’ll do so by stealing

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

17

the example code from overlap.u (see also the Step 2 section) and put the missing
initialization there:

1. #MP Macro ComputeAllOverlaps
2. #MP maxmatchlen = 0
3. #MP For i=0, MaxIndex
4. #MP MergeBase%ui = i ;no redirection yet
5. #MP Setstr str2 = STR_%ui
6. #MP Setstr FirstLetter = {uSubstr, STR_%ui, 0, 1}
7. #MP For j=0, MaxIndex
8. #MP If i!=j
9. #MP Setstr str1 = STR_%uj
10. #MP ComputeOverlap[]
11. #MP Endif
12. #MP Endfor
13. #MP Endfor
14. #MP Endm

In this straightforward macro, lines 2 and 4 provide the missing initialization; the rest of the
code is copied.

To see the results of what we’ve got, we add the following code to string definitions (see
merge.u)
#MP RemoveFluff
#MP ComputeAllOverlaps
#MP GreedyMerge
#MP For i=0,MaxIndex-1
#MP Ifdef STR_%ui
STR_#mp%ui is "#mp%sSTR_%ui"
#MP Else
STR_#mp%ui is no longer defined
#MP Endif
#MP Endfor

This will print the values of the strings remaining after the merge, or stubs for undefined
strings:

STR_0 is "stuffoobaroqueue"
STR_1 is "garb"
STR_2 is no longer defined
STR_3 is no longer defined

To complete the superstring construction, we need to concatenate together all strings
remaining after GreedyMerge:

1. #MP Macro Concatenate
2. #MP Setstr SuperString = ""
3. #MP For i=0, MaxIndex
4. #MP Ifdef STR_%ui
5. #MP Setstr SuperString = SuperString + STR_%ui
6. #MP Endif
7. #MP Endfor

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

18

8. #MP SuperString = Ustrlen(SuperString)
9. #MP Endm

Note that we could (and probably should) undefine STR_%ui after line 5 if we wanted to be
memory-conscious. Also, line 8 prepares the length of the superstring for future convenience.

A test of it is in superstr.u where we added
#MP RemoveFluff
#MP ComputeAllOverlaps
#MP GreedyMerge
#MP Concatenate
Superstring of length #mp%uSuperString:
"#mp%sSuperString"

The output is
Superstring of length 20:
"stuffoobaroqueuegarb"

Step 4: Generating the C tables
The remaining part is quite straightforward; we’ll borrow the technique from the earlier
examples (tree.u and encode3.u)

Recall that the macro AddString collected two copies of a supplied string: STR_%ui which
are now gone, and STRx_%ui which are still available:

1. #MP Macro CLength
2. const unsigned char length[#mp%uLindex] =
3. {
4. #MP For i=0,Lindex-1
5. #MP len = Ustrlen(STRx_%ui)
6. [#mp%ui] = #mp{%ulen}U, //length of "#mp%sSTRx_%ui"
7. #MP Endfor
8. };
9. #MP Endm

This macro generates the array of string lengths. Line 6 provides C99-style designated
initialization for better readability, but it’s not necessary.

1. #MP Macro CIndex
2. const unsigned short index[#mp%uLindex] =
3. {
4. #MP For i=0,Lindex-1
5. #MP Setstr dummy = {uSplit, SuperString, STRx_%ui}
6. #MP ix = SuperString - Ustrlen(STRx_%ui)
7. [#mp%ui] = #mp{%uix}U, //index of "#mp%sSTRx_%ui"
8. #MP Endfor
9. };
10. #MP Endm

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

19

This macro generates the array of indices of the original strings into SuperString. After
line 5 the numeric value of SuperString is just after the first occurrence of string i in the
string SuperString. Subtracting the length of string i in line 6 yields an index to the
beginning of string i in SuperString.

Finally, we need to encode and pretty-print SuperString:

#MP Macro CSuper
const unsigned char SuperString[] =
{
#MP EncodeString(SuperString)
#MP PrettyPrintStringAsHex(result, 10)
};
#MP Endm

The macros invoked in CSuper do all the work; they have been covered earlier in this
Application Note.

Now we can wrap all the processing in a macro so that gory details do not disturb an
application programmer:

#MP Macro EndNames
#MP RemoveFluff
#MP ComputeAllOverlaps
#MP GreedyMerge
#MP Concatenate
#MP CLength
#MP CIndex
#MP CSuper
#MP Endm

We can test the whole thing now (see super.u which is also shown below in all its glory)
#MP Include "st.inc"
#MP Include "super.inc"
#MP BeginNames
#MP AddString("stuff")
#MP AddString("foo")
#MP AddString("bar")
#MP AddString("foobar")
#MP AddString("baroque")
#MP AddString("queue")
#MP AddString("garb")
#MP AddString("stuff")
#MP EndNames

The result of the run:
const unsigned char length[8] =
{
 [0] = 5U, //length of "stuff"
 [1] = 3U, //length of "foo"
 [2] = 3U, //length of "bar"

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

20

 [3] = 6U, //length of "foobar"
 [4] = 7U, //length of "baroque"
 [5] = 5U, //length of "queue"
 [6] = 4U, //length of "garb"
 [7] = 5U, //length of "stuff"
};
const unsigned short index[8] =
{
 [0] = 0U, //index of "stuff"
 [1] = 4U, //index of "foo"
 [2] = 7U, //index of "bar"
 [3] = 4U, //index of "foobar"
 [4] = 7U, //index of "baroque"
 [5] = 11U, //index of "queue"
 [6] = 16U, //index of "garb"
 [7] = 0U, //index of "stuff"
};
const unsigned char SuperString[] =
{
 /*[000]*/ 0x73,0x74,0x75,0x66,0x66,0x6f,0x6f,0x62,0x61,0x72,
 /*[010]*/ 0x6f,0x71,0x75,0x65,0x75,0x65,0x67,0x61,0x72,0x62,
 /*[020]*/
};

Note. If we have many strings, the processing would take some time. In part, it’s the nature
of a quadratic-complexity algorithm, in part, it’s the memory consumption: requesting more
memory slows the system down. To save some memory, we can change AddString so that
it doesn’t collect additional copies of strings STRx_%i.
To gain access to the user-supplied strings in EndNames, we’ll scan the AddString
definitions twice (see superb.inc and superb.u). In the end of the first scan we’ll make
the superstring calculations, and in the end of the second scan, use the strings acquired again
to generate the C tables.
Here are the modified macros:

#MP Macro BeginNames
#MP maxlen = 0
#MP For pass =0,1
#MP Lindex = 0
#MP Total = 0
#MP Endm

#MP Macro EndNames
#MP If pass == 0
#MP RemoveFluff
#MP ComputeAllOverlaps
#MP GreedyMerge
#MP Concatenate
#MP Else
#MP CLength
#MP CIndex
#MP CSuper
#MP Endif

Unimal: Unified Macro Language

© 2007-2008 MacroExpressions http://www.macroexpressions.com

21

#MP Endfor
#MP Endm

AddString is different only in that it no longer collects STRx_ copies, and CLength and
CIndex macros use name bases STR_ instead of STRx_.
The output of superb.u matches that of super.u.

	Unimal 2
	Pretty printing
	Trees and Recursive Macro Expansions
	Constructing a containing string with Unimal
	Outline of the Algorithm
	Step 1: Eliminating the substrings
	Step 2: Computing the strings overlap information
	Step 3: Merging the strings into a superstring
	Step 4: Generating the C tables

