
Unimal: Unified Macro Language

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal 2.0b
Application note 7

Guarding the include files

Documentation revision 2.0b

Techniques:
When to guard and when not to guard Unimal include files
Using uAutoLine as an include file guardian

MacroExpressions
http://www.macroexpressions.com

Unimal: Unified Macro Language

© 2000-2006 MacroExpressions http://www.macroexpressions.com

1

Table of contents
FOREWORD .. 1

TO GUARD OR NOT TO GUARD? .. 1

A C-STYLE GUARDING .. 2

USING UAUTOLINE FOR GUARDIAN ... 2

Foreword
In C-like languages where information is shared among translation units via include
(header) files, a common idiom is to guard an include file, say, header.h, like so:
#ifndef HEADER_H_
#define HEADER_H_
.........
Real content
.........
#endif

The net effect of the ifndef/define/endif guard is that however many times, directly or
indirectly, the header is included, only the first inclusion has any effect.

In this Application Note, we’ll consider when a similar technique is useful in Unimal and how
to implement it easily when needed.

To guard or not to guard?
In C, guarding header files is common but not universal. For instance, the C system header
assert.h is (typically) not guarded, and that’s on purpose.

Taking this direction in Unimal: When is it reasonable to guard an include file and when is it
not?

Consider, for the example, a table of definitions like
#MP Expand Something(1)
#MP Expand Something(10)
#MP Expand Something(11)
#MP Expand Something(110)

If it is placed in an include file, we probably want it to be included as many times as we
include the file, considering that the macro Something may by design expand differently
depending on some controlling parameter. In this case, we don’t want to guard the include
file.

A macro definition placed in an include file does not require a guard: Unlike C, Unimal
detects that it’s the same textual definition and ignores it automatically. However, a guard
does no harm, and multiple inclusions of an include file with many macro definitions is likely
to be processed faster if guard is present.

A somewhat odd example is a conditional definition of a macro, like
#MP If condition

Unimal: Unified Macro Language

© 2000-2006 MacroExpressions http://www.macroexpressions.com

2

#MP Macro Foo
::: In Foo :::
#MP Endm
#MP Else
#MP Macro Foo
::: In Alternative Foo :::
#MP Endm
#MP Endif

If condition changes between two inclusions of an include file with such a construct, the
macro definition will be picked up from a different block and a macro redefinition error will
result. So, if the intention is to get the first-seen definition of Foo, we need a guard. On the
other hand, this construct may be used to trap an unexpected change of condition and
break the build if it happens. In this case, a guard is not wanted.

A general conclusion is that it is up to the programmer to decide whether to guard a Unimal
include file, but the need in guarding is far less than it is in C.

A C-style guarding
It is straightforward to use a C technique of guarding: For myfile.u, we can write
#MP If !Defined(MYFILE_U_)
#MP MYFILE_U_ = 0 ;any value, just to define a parameter
.........
Real content
.........
#MP Endif

Arguably there is a weakness: There is no correlation between the file name and the
guardian name; this also applies to C/C++. Accidentally, a name of a guardian can be used
in different include files as a result of file renaming and/or cut-n-paste mistakes. People
learned to live with this, but Unimal offers some automation which eliminates the weakness,
as described below.

Using uAutoLine for guardian
Recall that the string value of the macro parameter uAutoLine is the name of the current
file (by default, as seen by Unimal, or if the –p command-line switch is used, a fully
qualified name).
The Unimal composite names mechanism allows to use %suAutoLine as the name of a
macro parameter; for an include file myfile.u the name becomes myfile.u and cannot
be used literally. If we assign a value to a parameter with this name, it is very likely to be
unique:
#MP If !Defined(%suAutoLine)
#MP %suAutoLine = 0 ;any value, just to define a parameter
.........
Real content
.........
#MP Endif

The first two lines are good for thoughtless cutting and pasting; the match of the file name
and the guardian name is automatically ensured. [Oh yes, it is possible to contrive a name

Unimal: Unified Macro Language

© 2000-2006 MacroExpressions http://www.macroexpressions.com

3

by hand to confuse this scheme. But it would be a result of a conscious effort, not of an
accidental mistake.]

	Foreword
	To guard or not to guard?
	A C-style guarding
	Using uAutoLine for guardian

