Unimal: Unified Macro Language

Unimal 2.0

Application note 4

Automating sparse and lookup tables

Documentation revision 2.00

Techniques:
Examples of developing rather complex algorithms and implementing
them at compile time:
- storage and maintenance optimization for sparse tables;
- zero-maintenance lookup tables for accessing constant data

MacroExpressions
http://www.macroexpressions.com

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 1

Table of contents

FOREWORD.....cccotmtuummmmanmnnannisanesanasanssetsnsmessamessanasssmasssssessssessssessssassssasansasnssasnsnnss 2
SPARSE TABLES........cimtiiimimnaiunemanieneninnemamsmsmsessmsissmessmesamssssssssssssssnssasnsans 3
A PROBLEM AND THE FIRST SOLUTION .. tuututttnttsanststnstsaenssstsastsssnssssssnetsenessessnsnesreesnenees 3
A NICER SOLUTION .11 tuttuttattuestustesst s st sss it saea s sa s s s e e s s s s s s e s e s s e e s s e e s s e et e e et e e et renetrenaes 4
ANALYSIS AND AN IMPROVEMENT: ACCESS FUNCTION AND AUTO=SIZING ...uvuvruiuasenssienssienssnenssienes 5
SI1ZE OPTIMIZATION: CHOPPING OFF THE LEADING DUMMY ENTRIES ..vuvuituiussinssninssieesienasnnnasnnnans 8
COMPRESSING A SPARSE TABLE: A PLAN ... tutuitititst it et itet st ss s s s s s e s st s s e s eas s e e s ene s neaees 11
A GENERALIZATION: FROM SPARSE TABLES TO LOOKUP TABLES..........cccoteimuiennns 16
IMPLEMENTING A COMPRESSED LOOKUP TABLE ... vuvututtasttasetsssnssstssnssssnstsansnsanesssnesnenasnenes 16
A BETTER COMPRESSION OF THE LOOKUP TABLE 1utuuuuitisnitisnititstssstsastsastssstssssssnsanensaenans 21
DISCUSSION ...cccimimaimmmanemanesanassansessssesstanssnsssssssssssssasessasssssssesssssssssssassnsnsaasnnnnss 27

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 2

Foreword

This application is one of the more complex and involved. However, it is of high practical
importance because it results in zero maintainability efforts for lookup tables and associated
access functions. In fact, the need to automate lookup tables was one of the main reasons
why Unimal was born.

Examples of constant objects that require a lookup include such disparate cases as
+ Translation between character encodings (e.g., between Korean KSC and Unicode)
+ Incoming message qualification based on the message header

Whenever a table of objects of some kind is constant, so, conceptually, is the corresponding
lookup table (or a “perfect hash” table, if you will). It makes a lot of sense to generate such
stuff at compile time so that the code consumes less memory and starts faster. It is also
important to eliminate project maintenance efforts by updating the support table
automatically when the table of objects does change.

In this application note, we will consider several problems of increasing complexity; our
objective will always be reducing the project maintenance efforts. In the examples we use,
the target programming language will be C; not that it is essential, but it makes example
fixed syntax of the output we will want to generate.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 3

Sparse tables

A problem and the first solution

Consider the task of static initialization of a sparse table, i.e., a one with many zeros or
“don’t care” elements. In our example, the table will have 32 elements with significant
entries at positions 9, 11, 24 and 27 with values 1, 2, 3, 4 respectively. All other elements
are zeros (or “don’t care”). This is what it might look like in C:

const unsigned SparseTable[32] = {
0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,
0,0,0,0,0,0,0,3,0,0,4,0,0,0,0

¥

You may notice that such a table is extremely difficult and error-prone to maintain, no
matter how much of nice formatting and commenting you add. Maintainability would
improve greatly if we could enter only significant elements in an easily maintainable way.
This problem will occupy us for quite some time, with different levels of complexity. For
now, we suggest the following Unimal solution (see Samples\AppNotes\4\sparsel.u):

#MP Set Entry9=1 ;value at offset 9

#MP Set Entryll =2 ;value at offset 11
#MP Set Entry24 =3 ;value at offset 24
#MP Set Entry27 =4 ;value at offset 27

const unsigned SparseTable[32] ={
#MP For | ndex =0, 31
#MP Ifdef Ent ry%uU ndex
#mp%dEnt r y%uU ndex, /* Offset= #mp%u ndex */
#MP Else
0, /*dummy*/
#MP Endif
#MP Endfor

h
Here is how it works:

First, we define an Entry9 ..Entry27 variables, one for each significant entry’s offset. We

assign them corresponding values the table’s entries should take (in our example, 1,2,3,4
respectively).

Then, the For / Endfor loop creates the table’s 32 entries. If the Index (loop variable) is
such that Entry %undex is defined, then its value is assigned in the beginning, and we
just render it to the output file. If, however, Entry %uUndex is not defined, it means (by

our construction) that there is no significant entry at this offset in the table, and we render
a zero, for the sake of certainty. We also add target-language comments indicating whether
an entry is dummy or significant.

The output is shown below.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 4

const unsigned SparseTable[32] = {
[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* Offset=9 */
[* dummy */

[* Offset=11 */
[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* dummy */

[* Offset=24 */
[* dummy */

[* dummy */

[* Offset=27 */
[* dummy */

[* dummy */

[* dummy */

[* dummy */

COO0OO0OPPRODOWOOOOOOOOOOOONOPrOOOOOOOOOoO

A nicer solution
Now, we want our solution to have the standardized look of a table definition, as follows:

#MP Expand SparseTableBegin (SparseTable, 32) ;(name, size)
#MP Expand DefineEntry(9, 1) ;value 1 at offset 9
#MP Expand DefineEntry(11, 2) ;value 2 at offset 11
#MP Expand DefineEntry(27, 4) ;value 4 at offset 27
#MP Expand DefineEntry(24, 3) ;value 3 at offset 24

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 5

#MP Expand SparseTableEnd ()

Note that, as a favor to the application programmer and to the maintainer, we want to allow
the entries to be defined in any order.

Here are the macros that achieve our objective (see Samples\AppNotes\4\sparse2.u):

#MP Macro SparseTableBegin ;(name, size)
const unsigned #mpY%rEL# [#mpYu2#] = {
#MP tsize = #2# ;save the size

#MP Endm

#MP Macro DefineEntry ;(position, value)
#MP Set Entry %utl# = #2#
#MP Endm
#MP Macro SparseTableEnd 0
#MP For Index =0, tsize-1 ;use the saved size
#MP Ifdef Entry %undex
#mp%UEntry %undex, /* Offset= #mp%undex */
#MP Else
0, /* dummy */
#MP Endif
#MP Endfor
%
#MP Endm

SparseTableBegin simply renders the C array definition line and saves the array size.
DefineEntry merely defines the entry for Unimal: the entry indexed by “position” is

defined only for the positions we want; in this case the value of the entry is what we
supplied in a macro invocation.
The bulk of the work is done in SparseTableEnd. Note that when we arrive there, the

definitions of Entry %uUndex do not depend on the order of invocations of
DefineEntry . SparseTableEnd renders in a loop the values that were previously
defined or “don’t care” entries. Finally, it closes the C initialization statement.

The output of sparse2.u, not surprisingly, is the same as the output of sparsel.u.

Analysis and an improvement: Access function and auto-sizing
There are two issues with our solution.

One is that we do not have a protection against an out-of-range index. This is easy to fix
with an access function, like

unsigned myaccess(unsigned index)

if (index>=32) return O; /* don't care value */
return SparseTable[index];

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 6

The other issue is an out-of-range definition, like the one in
Samples\AppNotes\4\sparse3.u:

#MP Expand SparseTableBegin (SparseTable, 32) ;(name, size)
#MP Expand Defi neEntry(39, 1) ;value 1 atan out-of-range 39
#MP Expand DefineEntry(11, 2) ;value 2 at offset 11
#MP Expand DefineEntry(27, 4) ;value 4 at offset 27
#MP Expand DefineEntry(24, 3) ;value 3 at offset 24

#MP Expand SparseTableEnd ()

We can see by running

Unimal sparse3.u
or simply by inspecting the SparseTableEnd macro that an out-of-range definition is
silently thrown away, without any indication of an error.

Of course, we could trap this error in the DefineEntry macro, but it is not the point. The

real issue here is that in order to reduce maintenance, we want the table size to adjust
automatically according to actual entries definitions.

To do so, we need to keep track of the maximum offset of an entry. We can do this with the
help of a simple macro computing the running maximum (Samples\AppNotes\4\sparse4.u):

#MP Macro Maximum ; (new_entry, running_max)
#MP Ifdef — #2#
#MP If #1#>H#2#
#MP #2# = #1# ;Setto current maximum
#MP Endif
#MP Else
#MP ;Maximum of one element equals to that element
#MP #2# = #1#
#MP Endif
#MP Endm

We need to redefine the table generating macros.

First, we no longer supply the table size to SparseTableBegin ; since the C syntax
allows omitting the size of an initialized array, it becomes very simple:

#MP Macro SparseTableBegin ;(name)
const unsigned #mpYorl#[] = {
#MP Endm

DefineEntry will now keep track of the max index encountered thus far; by the time we
reach SparseTableEnd , max_index will contain the actual max index of the array.

#MP Macro DefineEntry ;(position, value)
#MP Set Entry %utl# = #2#
#MP Expand Maximum(#1#, max_index)
#MP Endm

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 7

Since the table size is one greater than max_index , SparseTableEnd is modified
accordingly:

#MP Macro SparseTableEnd 0
#MP For Index = 0, max_index
#MP Ifdef Entry %undex
#mp%lEnt r y%ul ndex, /* Offset= #mp%u ndex */
#MP Else
0, /* dummy */
#MP Endif
#MP Endfor
¥
#MP Endm

(The only modification is the upper limit of the loop in the For statement.)

Finally, we need to modify our access function to take into account the actual max index to
the table:

unsigned myaccess(unsigned index)

if(index> #mp%urax_i ndex) return O; /* don't care value */
return SparseTable[index];

}

We can now run
Unimal sparse4.u

and see that everything is sized correctly:

const unsigned SparseTable[] = {
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
2, [* Offset=11 */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language

0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
3, /* Offset=24 */
0, /* dummy */
0, /* dummy */
4, [* Offset=27 */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
1, /* Offset=39 */
¥

unsigned myaccess(unsigned index)

if(index>39) return 0O; /* don't care value */
return SparseTable[index];

Size optimization: Chopping off the leading dummy entries
Let’s return to our original table entries (Samples\AppNotes\4\sample5.u):

#MP Expand SparseTableBegin (SparseTable) ;(name)

#MP Expand DefineEntry(9, 1) ;value 1 at offset 9

#MP Expand DefineEntry(11, 2) ;value 2 at offset 11
#MP Expand DefineEntry(27, 4) ;value 4 at offset 27
#MP Expand DefineEntry(24, 3) ;value 3 at offset 24

#MP Expand SparseTableEnd ()

If we run
Unimal sparse5.u

we can observe that the table lost its trailing zeros:

const unsigned SparseTable[] = {
0, /* dummy */
0, /* dummy */
0, /* dummy */

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 9

0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
1, /* Offset=9 */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
3, /* Offset=24 */
0, /* dummy */
0, /* dummy */
4, [* Offset=27 */

¥

unsigned myaccess(unsigned index)

{
if(index>27) return O; /* don't care value */
return SparseTable[index];

}

This is good news: we save on the table size. (Of course, we could anticipate this given the
way we auto-size the array.)

But this also prompts us to think whether we can drop the nine leading “don’t care” entries.
The answer is yes, but the index correction must be made in the access function.

To do so, we need to keep track of the minimum offset of a defined entry. We can do this
with the help of a macro computing the running minimum
(Samples\AppNotes\4\sparse6.u), which (naturally) is the same as Maximum, except for

the comparison sign:

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 10

#MP Macro Minimum ; (new_entry, running_min)
#MP Ifdef — #2#
#MP If #1#<#2#
#MP #2# = #1# ;Set to current minimum
#MP Endif
#MP Else
#MP ;Minimum of one element equals to that element
#MP #2# = #1#
#MP Endif
#MP Endm

We will now modify to also keep track of the min defined index:

#MP Macro DefineEntry ;(position, value)
#MP Set Entry Q%utl# = #2#
#MP Expand Maximum(#1#, max_index)
#MP Expand Minimum(#1#, min_index)
#MP Endm

By the time we reach SparseTableEnd , min_index will contain the actual min index of
a defined entry of the array.

SparseTableEnd needs a slight modification: the For loop must now begin with
min_index , so as not to output the leading dummy entries:

#MP Macro SparseTableEnd 0
#MP For Index = min_index, max_index
#MP Ifdef Entry %undex
#mp%lEnt r y%ul ndex, /* Offset= #mp%uU ndex */
#MP Else
0, /* dummy */
#MP Endif
#MP Endfor

b
#MP Endm

Finally, we need to modify the access function. The test for out-of-range index is now two-
sided; also the actual index to the array must be adjusted by the number of omitted dummy
entries:

unsigned myaccess(unsigned index)

if(index> #mp%urax_i ndex || index< #mp%um n_i ndex) {
return O; /* don't care value */

}

return SparseTable[index - #mp%un n_i ndex];

}

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language

11

If we run

Unimal sparse6.u

we can observe that the table lost its trailing zeros:

const unsigned SparseTable[] = {

h

1, /* Offset=9 */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */
0, /* dummy */

3, [* Offset=24 */

0, /* dummy */
0, /* dummy */

4, [* Offset=27 */

unsigned myaccess(unsigned index)

}

if(index>27 || index<9) {

return O; /* don't care value */

return SparseTable[index - 9];

Compressing a sparse table: a plan

Let’s reflect on the result we got in the previous section. We have now a compressed

representation of the array (we removed leading and trailing dummy entries). The price we

paid for it is that now we absolutely need a related access function.

But if so, a natural question is: If we are willing to make our access function a tad more
complex, can we further compress the table representation?

We will explore the following idea:

1. Split the sparse table into several smaller (partial) tables.

2. Merge those partial tables in a single common table, each partial table starting at its

own offset. The offsets of partial tables are selected in such a way that no two significant

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language

entries of any two partial tables have the same offset in the common table (i.e., do not

collide).

As an illustration of what we are going to do, consider splitting the access index into two
pieces: a quotient and a remainder for some split divisor (in our example, 4)

Index | 3-bit digest 2-bit offset Value (object
(quotient, q) | (remainder, r) number)

9 2 1 1

11 2 3 2

24 6 0 3

27 6 3 4

Now we can read this table as follows:

Given an index, compute the quotient and the remainder; for each quotient, there is a small
sparse table yielding the value. All quotients can be arranged in a (primary) small lookup
table to reference the (secondary) tables indexed by remainders of the original index.

We can concatenate all tables together so that the primary lookup table contains indices to
the same array. Of course, while doing so, we can remove leading and trailing dummy

entries from all tables.

In our example, the combined table should be like this:

const unsigned SparseTable[] = {
/* begin (primary) lookup table */
/*0 omitted */
/*0 omitted */
4, I* base index for q=2 */
0, /* dummy */
0, /* dummy */
0, /* dummy */
8, /I* base index for q=6 */
/*0 omitted */
/* end of (primary) lookup table */
/* begin index table for quotient 2 */
/*0 omitted */
1, /g=2r=1%*
0, /* dummy */
2, I*q=2r=3*
/* end index table for quotient 2 */
/* begin index table for quotient 6 */
3, /*q=6r=0*
0, /* dummy */
0, /* dummy */
4, [* q=6 r=3 */
/* end index table for quotient 6 */

h

The table is supposed to work like this:

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 13

If for instance the index is 11 (quotient q=2, remainder r=3), we get an internal index by
subtracting the number of omitted dummy entries of the primary table (2) from the quotient

(2). The result is 0, so we read the index from SparseTable[0] . Itis a base of the
secondary lookup table with any omitted entries taken into account. SparseTable[0] is
4; we add the remainder (3) to it to get 7; SparseTable[7] is the result; it is 2 as it

should be for the index 11.

Likewise, if the index is 10, we’ll arrive at the result at SparseTable[6] ; itis 0 (“don't
care”) as it should be.

However, we get in trouble with the index 8: following the same calculation, we find the
result at SparseTable[4] ; it is supposed to be “don’t care” since the value at index 8 is

not defined. Yet it is 8 and, the way we constructed the table, actually happens to be an
entry in the primary (quotient) table.

This mishap could in fact be anticipated. Indeed, since we did remove leading and trailing
“don‘t care” entries and did not add index range checking for the secondary (remainder)
table, all the sub-tables in our combined table are overlapping, so a significant entry in one
table can occupy a place where a “don’t care” of another sub-table is expected.

So, the combined table above:
» Correctly finds entries that were originally defined
» May incorrectly find a phantom value for a “don’t care” (undefined) entry.

A way to correct this problem is to have an “oracle” which would tell us whether the value
we found is a phantom or an actually defined value.

There is an economical way to design such an oracle: just a table of pairs <index, value>
such as:

const struct values_t {
unsigned index;
unsigned value;
} values[] = {
{9, 1},
{11, 23},
{24, 3},
{27, 4},
¥

The secondary sub-tables of SparseTable above should contain, instead of the value, an
index to the values array. Then, an index we pull out of SparseTable is good if it is less
than the number of entries in the values array and the index field of the entry pointed to
is in fact the index we started with.

Here is a redesigned table appropriately renamed LookupTable with changes shown in
boldface:

const unsigned LookupTable[] = {
/* begin (primary) lookup table */
/*0 omitted */

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language

14

/*0 omitted */
4, I* index of the index table for quotient 2*
0, /* dummy */
0, /* dummy */
0, /* dummy */
8, /I* index of the index table for quotient 6 */
/*0 omitted */
/* end of (primary) lookup table */
/* begin index table for quotient 2 */
/*0 omitted */
0, /* q=2 r=1 */
0, /* dummy */
1, /* g=2 r=3 */
/* end index table for quotient 2 */
/* begin index table for quotient 6 */
2, /* g=6 r=0 */
0, /* dummy */
0, /* dummy */
3, /'* q=6 r=3 */
/* end index table for quotient 6 */

3
Now we are in a position to finalize a design of the access function:

unsigned myaccess(unsigned index)

{
unsigned Object; /Ireference to the object in values table
unsigned Oblndex; //index to the object reference
unsigned base; //base index of the secondary sub-table
unsigned quotient = index/4;
unsigned remainder = index%4;

guotient = quotient-2; //lback by leading O's in quotients
if (quotient>=12) {
return 0; /*index out of range */

}
base = LookupTable[quotient]; /Istart of sub-table
ObIndex = base+remainder; /lobject reference index
if (Oblndex>=12) {
return 0; /*index out of range */
}
Object = LookupTable[base+remainder]; //object reference
if (Object>=4) return 0; //out of range
if (values[Object].index != index) {
return 0; //check failed

}
}

return Object + 1, //1-based index

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 15

This function works as follows:

It computes the index to the primary (quotient) sub-table and rolls it back by the number of
leading dummy entries (in this case, 2). If the result is greater than 11, the max index to
LookupTable , the index is out of range and the function returns 0 for “don’t care”.

Otherwise, it retrieves the base index of the sub-table for the given quotient and computes
the (secondary) index Oblndex by adding the remainder. If Oblndex is out of range,

the function returns 0 for “don’t care”. Otherwise, the function retrieves Object , the index
to the values array. If the index comparison passes, the corresponding index is returned;
otherwise, 0.

It’s worth noting that by looking at the entries of LookupTable , we cannot tell anymore
whether a 0 is an index to values[0] or a dummy entry. However, for a dummy entry the
index match test in myaccess will fail.

This design deserves some discussion that follows.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 16

A generalization: From sparse tables to lookup tables

A plan of compressing sparse tables which we designed in the previous section has some
curious properties.

First, the LookupTable contains only indices (to itself or to values). Those indices can

very well be small numbers and can be stored in a C data type smaller than unsigned. We
note this as a potential space saver but will not explore it any further because this is almost
trivial.

Second, an additional space can be saved if we subtract the minimum value of a valid index
first. Indeed, if valid indices are in the range 10000000 to 10000009, splitting the index
value will probably produce a single-entry quotient table and the remainder table for it
would be as long as the original index table before the split. Normalizing the index range to
zero is a good idea. We, however, will pass it up for simplicity; it is not difficult to add but it
would contaminate the oh-so-great clarity of this presentation.

Third, we never used the fact that the value field of the elements of the values array is
numeric. In fact, it can be any type whatsoever, so long as the values t type is defined
appropriately. In our Unimal implementation in the next section we will assume that the
value field of has a type ob_type defined elsewhere; we’ll use Ob1l, Ob2, Ob3, Ob4
names instead of the values 1, 2, 3, 4.

Fourth, the design of the function myaccess takes into consideration that the quotient and

remainder tables can overlap in the combined table; it makes no assumption on how exactly
they overlap. This opens an opportunity to compress the table further; we'll explore it later.

Now, let’s implement the design of the previous section in Unimal.

Implementing a compressed lookup table

We still want to get the standard look of the table; but since we changed the paradigm,
more appropriate names are used below:

#MP Expand ObjectTableBegin (ObjectTable) ;(name)

#MP Expand DefineEntry(9, Obl) ;Ob1 with index 9

#MP Expand DefineEntry(11, Ob2) ;Ob2 with index 11
#MP Expand DefineEntry(27, Ob4) ;Ob4 with index 27
#MP Expand DefineEntry(24, Ob3) ;Ob3 with index 24

#MP Expand ObjectTableEnd ()

Note that we also want to allow out-of-order definitions of entries as shown above. The
example file for this section is Samples\AppNotes\4\sparse7.u

Our implementation will have two passes over the object definitions: one for the (sparse)
lookup table and another for the table of the objects (values). So, this time it will have a
loop where the For is wrapped in ObjectTableBegin and Endfor in
ObjectTableEnd

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 17

The macro ObjectTableBegin starts the loop and renders pass-specific C definition
statements. It also initializes count to count the number of entries:

#MP Macro ObjectTableBegin ;(hame)
#MP For pass=0,1
#MP count=0

#MP If pass==
const unsigned LookupTable[] = {
#MP Endif

#MP If pass ==

const struct values_t {
unsigned index;
unsigned value;

} values[] = {

#MP Endif

#MP Endm

The macro DefineEntry (see below) computes the quotient q and the remainder r and
maintains (in pass 0) running minimum and maximum of the quotients (min_q and
max_(q) and, for each quotient g, running minimum and maximum of the corresponding

remainders. These minimums and maximums will be used to trim “don’t care” zeros from
the combined table.

#MP Macro DefineEntry ;(index, ob_name)

#MP = #1# [divisor

#MP r= #1# % divisor

#MP If pass ==
#MP Expand Maximum(q, max_q)
#MP Expand Minimum(qg, min_q)
#MP Expand Maximum(r, max_r_ %.0Q)
#MP Expand Minimum(r, min_r_ %)
#MP Entry %outl# = count

#MP Endif

#MP If pass ==

{ #mpY%ul#, #mpYm2#},

#MP Endif
#MP count = count+1
#MP Endm

Like a previous implementation (sparse6.u), Entry<index> is defined; this time its value is
count which is the index to the oracle (values) table of objects made in the next pass.

In pass 1, the macro simply renders the line of the values array as a pair {index, object}.
Finally, the running number of defined entries (count) is incremented.

Of course, divisor must be defined before use; in our example it is
#MPSet divisor = 4

The macro ObjectTableEnd is conceptually very simple:

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 18

#MP Macro ObjectTableEnd 0

#MP If pass ==

#MP Expand FillLookupTable()
#MP Endif ;pass

¥
#MP Endfor
#MP Endm

In pass 0 it expands the macro FillLookupTable which renders the data of the
combined lookup table. We discuss FillLookupTable in detail later. Then it closes the C
definition statement with “}; “. In pass 0 this ends the lookup table, and in pass 1 the table
of objects (values). Finally, it ends the loop body that began in ObjectTableBegin

The access function is rendered strictly according to the design of the previous section:

unsigned myaccess(unsigned index)

{
unsigned Object; //reference to the object in v alues table
unsigned Obindex; //index to the object referen ce
unsigned base; //base index of the secondary su b-table
unsigned quotient = index/ #mp%uli vi sor ;
unsigned remainder = index% #mp%uli vi sor ;

/lback by leading O's in quotients
guotient = quotient- #mp%ui n_d;

if(Quotient>= #mp%dabl eSi ze) {

return O; /* index out of range */
}
base = LookupTable[quotient]; //start of sub-ta ble
Obindex = base+remainder; //object reference in dex
if(Oblndex>= #mp%Tabl eSi ze) {

return O; /* index out of range */
}
Object = LookupTable[base+remainder]; //object reference
if(Object>= #mp%uweount) return O; //out of range
if(values[Object].index != index) {

return 0O; //check failed

}

return Object + 1; //1-based index

}

The parameter TableSize used for out-of-bounds checks is produced by the macro
FillLookupTable which is described next.

#MP Macro FillLookupTable ;() - works with predefined names
#MP curr_base =max_g-min_g+1 (1)
#MP For g =min_qg, max_q

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 19

#MP Ifdef min_r_ %u (2)
#MP base %ug = curr_base - min_r_ %L 1(3)
#MP curr_base = base_ % +max_r_ %uwg+1
#mp%Wbase_%.g, /* base index for q= #mpYow */ 1(4)
#MP Else
0, /* dummy */ :(5)
#MP Endif
#MP Endfor
/* end of (primary) lookup table */
#MP For g = min_q, max_q ;(6)
#MP Ifdef min_r_ %.Q (7)
/* begin index table for quotient #mpYow */
#MP For r=min_r_ %.ug, max_r_ %.u 1(8)
#MP Index = g*divisor + r ;recover index
#MP Ifdef Entry %undex
#mp%lEnt r y%uU ndex, /*g= #mp%.u r= #mp%u */
#MP Else
0, /* dummy */
#MP Endif
#MP Endfor :(9)
/* end index table for quotient #mpYow */
#MP Endif
#MP Endfor
#MP TableSize = curr_base ;(10)
#MP Endm

In this macro, curr_base is used to keep the index in the combined lookup table where

the next trimmed secondary (remainder) sub-table begins; the first one begins right after
the trimmed primary (quotient) sub-table; line (1).

Then we have a loop over the valid range of quotients; its job is to render the primary
(quotient) sub-table. Line (2) checks if any valid remainder exists for the given quotient; in
this, and only in this case the minimum of those remainders is defined (in pass 0 over all
DefineEntry macros).

If, according to line (2), the remainders exist, the corresponding sub-table will be added in
order. The index to this sub-table (base_<q>, line (3)) is, according to our design, to its
untrimmed beginning, which is the number of trimmed leading zeros less than curr_base

The next line updates the curr_base by the trimmed size of the encountered secondary
sub-table.

Line (3) deserves a little discussion: base_<qg> may end up being negative, and we use
unsigned indices. (The same observation, by the way, applies to conditioning quotient in

the beginning of myaccess function.) Both cases take advantage of modulo arithmetic -

in Unimal unsigned rendering in the first case and in C arithmetic in the second case.
Mathematically negative numbers will show as huge positive humbers, and this is OK. When
used in myaccess for index computation, they will produce a positive result or, for a

trimmed-out index, perhaps another huge number which surely will be out of range.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 20

Line (4) renders the base index to the remainders sub-table for the quotient g, along with a
nice comment.

If, however, the test in line (2) failed, a dummy 0 is rendered in line (5).

Line (6) begins a loop that renders the remainders sub-tables. The test in line (7) is
identical to that in line (2) and checks if the corresponding remainders sub-table exists at
all. If it does, the nested loop between lines (8) and (9) renders the trimmed sub-table,
sandwiched, again, between nice comment lines. In this nested loop, the original index is
recovered from the quotient and the remainder; if the corresponding Entry<index> is
defined (in one of DefineEntry macros) then its value is the index to the values table
of objects, and it is rendered with a corresponding comment. Otherwise, a dummy 0 is
rendered.

Finally, line (10) exposes the next available index in the table (curr_base) as
TableSize

Putting everything together (sparse7.u) produces the following result of Unimal processing:

const unsigned LookupTable[] ={
4, /* base index for q=2 */

/* dummy */

/* dummy */

/* dummy */

/* base index for q=6 */

/* end of (primary) lookup table */

0
0
0
8

/* begin index table for quotient 2 */
0, [*q=2r=1%*
0, /* dummy */
1, [* Q=2 r=3 */
/* end index table for quotient 2 */
[* begin index table for quotient 6 */
3, I* q=6 r=0 */
0, /* dummy */
0, /* dummy */
2, [* =6 r=3 */
/* end index table for quotient 6 */
3
const struct values_t {
unsigned index;
unsigned value;
} values[] ={
{9, Ob1},
{11, Ob2},
{27, Ob4},
{24, Ob3},
3

unsigned myaccess(unsigned index)

{

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 21

unsigned Obiject; IIreference to the object in values table
unsigned Oblindex; //index to the object reference
unsigned base; //base index of the secondary sub-table
unsigned quotient = index/4;

unsigned remainder = index%4;

guotient = quotient-2; /Iback by leading O's in quotients
if (quotient>=12) {
return 0; /*index out of range */

}
base = LookupTable[quotient]; /Istart of sub-table
ObIndex = base+remainder; /lobject reference index

if (ObIindex>=12) {
return 0; /*index out of range */
}

Object = LookupTable[base+remainderf]; /lobject reference
if (Object>=4) return 0; //out of range
if (values[Object].index !=index) {
return 0; //check failed
}

return Object + 1; /[1-based index

}

Note that the tables are slightly different than in the design prototype since in the beginning
of this section we intentionally changed the order in which the objects are defined.

A better compression of the lookup table

Recall that the implementation we are through with so much effort is about the plan stated
before:

1. Split the table into several smaller (partial) tables.

2. Merge those partial tables in a single common table, each partial table starting at its
own offset. The offsets of partial tables are selected in such a way that no two significant
entries of any two partial tables have the same offset in the common table (i.e., do not
collide).

What we did, in a way, is we trimmed each sub-table by chopping off leading and trailing
“don't care” entries and concatenated all the sub-tables in a single (lookup) table. In our
access function, we had to implement index validation because a significant entry of one
sub-table could pose as a “don’t care” entry of another sub-table.

This means that our method of producing the access function does not depend on how
exactly the sub-tables overlap, and this opens an opportunity for a better compression of
the sub-tables in a combined table. Specifically, we want to impose the following additional
requirement:

3. Implement step 2 in such a way that the sub-tables are intertwined. This means that a
significant entry of a partial table can be placed in the common merged table between
two significant entries of another partial table.

This is to say that for our example data definition,

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 22

#MP Expand ObjectTableBegin (ObjectTable) ;(name)

#MP Expand DefineEntry(9, Obl) ;Ob1 with index 9

#MP Expand DefineEntry(11, Ob2) ;Ob2 with index 11
#MP Expand DefineEntry(27, Ob4) ;Ob4 with index 27
#MP Expand DefineEntry(24, Ob3) ;Ob3 with index 24

#MP Expand ObjectTableEnd ()

we want the combined table to look like this:

const unsigned LookupTable[] ={
/* base index for q=2 */
I*q=2r=1*

[* q=6 r=0 */

[* Q=2 r=3 */

/* base index for q=6 */

[* q=6 r=3 */

MNP WOoO

8
Of course, the access function will have different index limit to check against:

unsigned myaccess(unsigned index)

{
unsigned Obiject; /Ireference to the object in values table
unsigned Oblindex; //index to the object reference
unsigned base; //base index of the secondary sub-table
unsigned quotient = index/4;
unsigned remainder = index%4;

guotient = quotient-2; /lback by leading O's in quotients
i f(quotient>=6) {
return 0; /*index out of range */
}

base = LookupTable[quotient]; /Istart of sub-table
OblIndex = base+remainder; /lobject reference index
i f (bl ndex>=6) {
return 0; /*index out of range */
}

Object = LookupTable[base+remainderf]; /lobject reference
if (Object>=4) return 0; //out of range
if (values[Object].index !=index) {
return 0; //check failed
}

return Object + 1; /[1-based index
}

(The lines changed from the previous implementation are shown in bold.)

Our new lookup table happens to be twice as short as the previous one; it even happens not
to have dummy entries (for this example). But we need to work a bit harder to generate it
automatically. The implementation we are pursuing is found in

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 23

Samples\AppNotes\4\sparse8.u; its goal is to leave the previous implementation
(sparse7.u) intact, except the macro FillLookupTable

To achieve the new interleave of sub-tables, we will control curr_base differently: instead
of leaping to the point just beyond the last merged sub-table, we’ll increment it by 1 and
see if any of the remaining sub-tables can be placed at this base. If such a sub-table exists,
we'll merge it in the current combined table and remove it from the list of remaining sub-
tables.

This plan requires iterative processing of sub-tables (until all sub-tables are merged in); it
also requires more housekeeping:

+ We need to keep track of the current size of the combined table (it may or may not
grow when a new sub-table is merged in); we'll use a parameter curr_end for this
purpose.

+ When we place the primary (quotient) sub-table, we know where its significant
entries are but we don‘t know yet what their values are (they are the base indices of
the secondary sub-tables which are known only when a sub-table is merged in). To
simplify the matters, we will not render the combined lookup table on the go;
instead, we will maintain a set of parameters It <x> where x is an index in the
lookup table. The (final) numeric value of It_<x> will be an index (to the
secondary sub-table or to the table of objects values) per the design; the string
value will be a comment line we want to render. At any time, if It_<x> is defined,
it means that the place at index x in the combined table is occupied.

With this in mind, the macro FillLookupTable can end with the following macro
RenderLookupTable

#MP Macro RenderLookupTable 0
#MP For temp =0, curr_end

#MP Ifdef It %uemp
#mp%Ulit _%u enp, ¥ #mp%s$t_%u enp */

#MP Undef It %uemp
#MP Else

0, /* dummy */
#MP Endif
#MP Endfor
#MP Endm

This macro fills all entries of the combined table in a loop: if an It_<n> s defined, it is

rendered as an index, along with the corresponding comment, and then undefined for the
sake of cleaning up; otherwise, a dummy entry is rendered.

Everything preceding is needed only to define parameters It_ <n> and curr_end
appropriately.

We begin with the macro ReservePrimaryPlaces which only marks the indices
corresponding to the primary sub-table as significant entries; the values don’t matter:

#MP Macro ReservePrimaryPlaces 0
#MP For g =min_qg, max_q (1)

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 24

#MP Ifdef min_r_ %.Q (2)

#MP temp=qg-min_q ;(3)

#MP It %uemp = 2006 ;(4) just define a placeholder
#MP Endif

#MP Endfor

#MP

#MP curr_base =1
#MP curr_end = max_g-min_q
#MP Endm

Line (1) begins a loop over valid range of quotients; the test in line (2) checks if the
corresponding secondary sub-table exists at all (we've already used this trick before). If the
test passes, temp in line (3) is the index of its base. We don’t know this base yet, so we use
an arbitrary number for now in line (4).

Finally, we set curr_base to 1 (place 0 is guaranteed to be occupied) and curr_end to
the length of the trimmed primary table.

Now, consider an attempt to place the sub-table corresponding to quotient q at
curr_base . A remainder r corresponds to the original Index = g*divisor + r ; if
Entry<index> is defined (in a DefineEntry ~ macro), the r ’s position in the combined
table would be

temp = curr_base +r - min_r_<g>

So, if It_<temp> s already defined, we have a collision and the sub-table cannot be
placed at curr_base . However, if we inspected all valid values of r and didn't detect a
collision, the sub-table can be placed at curr_base

This explains how the following macro works:

#MP Macro DetectCollision 0

#MP collision =0 ;no collision found yet
#MP For r=min_r_ %.ug, max_r_ %.u
#MP Index = g*divisor + r

#MP Ifdef Entry %undex

#MP temp = curr_base +r-min_r_ %Ly

#MP Ifdef It %uemp ;collision?

#MP collision =1 ;mark a collision

#MP r=max_r_ %ug ;break the loop (for speed)
#MP Endif

#MP Endif

#MP Endfor

#MP Endm

Now, when the time comes to merge a sub-table, the following macro does the job:

#MP Macro MergeTable ()
#MP For r=min_r_ %.ug, max_r_ %.Q
#MP Index = g*divisor + r

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 25

#MP Ifdef Entry %undex

#MP temp = curr_base +r-min_r_ %Ly

#MP It %uemp = Entry %undex

#MP Setstr It %uemp={udoin, "g=" ,{ %uw}, "r=" { %u}}
#MP Undef Entry %undex

#MP Endif

#MP Endfor

#MP temp=qQg-min_q

#MP ;index to secondary table replaces the placeholder:

#MP It %uemp = curr_base - min_r_ %L

#MP Setstr It %utemp = {uJoin, "base index for q=" ,{ %u}}
#MP

#MP Expand Maximum(curr_base+max_r_ %uwg-min_r_ %.q, curr_end)

#MP Undef min_r_ %.Q
#MP Undef max_r_ %.q
#MP Endm

First, we define, in a loop over remainders corresponding to defined object indices, It_<x>
as indices to the table of objects. We also define corresponding comment text; consult the
manual for how the string expressions work. For cleanup purpose, we undefine the object
index; it will no longer participate in detecting a collision in DetectCollision

Outside the loop, we repair the tentative definition of the sub-table index to point to the
(untrimmed) base of the currently merged sub-table. We also define the comment text we
like.

The remaining things done there:
+ Update the curr_end (in case the currently merged sub-table increased the total
size of the combined table)
» Undefine the valid range of the indices of the sub-table. It is not only a cleanup
operation; most importantly, we’ll not try to merge this table again and it will not
participate in detecting collisions.

Now we are in a position to put together the macro FillLookupTable

#MP Macro FillLookupTable ;() - works with predefined names

#MP Expand ReservePrimaryPlaces()

#MP

#MP For merge_pass =0, 0 (1)

#MP merged_now =0 flag ;(2)

#MP For g =min_qg, max_d ;(3)

#MP Ifdef min_r_ %uw ;(4) g-table is not merged yet
#MP Expand DetectCollision()

#MP If collision == ;found mergeable sub-table
#MP Expand MergeTable()

#MP not_merged = not_merged-1 :(5)
#MP merged_now =1 ;set the flag

#MP g =max_g+1 ;break the loop (for speed)
#MP Endif

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 26

#MP Endif

#MP Endfor

#MP

#MP If not_merged > 0 :(6)

#MP merge_pass = -1 ;force the loop continue
#MP ; If nothing merged, increment curr_base
#MP If Imerged_now (7)

#MP curr_base = curr_base + 1

#MP Endif

#MP Endif

#MP

#MP Endfor ;merge_pass loop

#MP

#MP Expand RenderLookupTable()

#MP Endm

After preliminarily defining the It_<x> parameters in ReservePrimaryPlaces , we

start the loop of iterations in line (1). The end-of-loop test is on line (6): if the number of
sub-tables remaining to merge is non-zero, we force the loop counter to -1. At Endfor it

will be incremented to 0 and the loop will continue. If we failed to merge a sub-table in this
merge pass (line (7)), we increment curr_base to try the next base.

Within the body of the loop, we first clear the indicator of having merged a table (line (2)),
and start a loop in line (3) which attempts to find and merge a sub-table. If min_r_ %L is

defined for the quotient g, it means that it was defined (in DefineEntry) and was not
undefined (in MergeTable), that is, the sub-table for the quotient q exists and is not

merged yet. For such a table, we check if placing it at would cause a collision; and if not, we
+ Merge the table by using MergeTable

+ Decrement the remaining number of sub-tables to merge (line (5))
+ Set the merged_now flag in line 5 not to increment curr_base (because another

sub-table may fit at the same base)

To test this implementation, we can run
Unimal sparse8.u

to see that our results are exactly what we were targeting.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 27

Discussion

The macro code presented in this Note grew increasingly complex to match the more
ambitious goals we set. Implementation described in the previous section is far from being
very simple. Whether or not you had enough patience to follow it, there are a few points to
keep in mind:

1. Based on original definitions of objects of any nature, the macros automatically generate
a highly compressed lookup table and a guaranteed two-step access (search) method to
the objects.

2. Since the compressed lookup table and the access method are generated automatically,
they require zero maintenance effort, no matter how the original table of objects
changes. The objects can be entered in the table of objects in any order.

3. All configuration work is done at compile time, saving runtime resources.

And finally, this Note illustrates how Unimal scales up with the complexity of the task at
hand.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

