Unimal: Unified Macro Language

Unimal 2.0

Application note 2
Stretching Unimal

Documentation revision 2.00

Techniques:
Extending capabilities using temporary files

MacroExpressions
http://www.macroexpressions.com

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 1

An example and a technique of extending Unimal functionality

Imagine you have a need to render a numeric value using various formats. E.g. you want to
be able to write something like

#MP Expand render("%d", 0x400)
#MP Expand render("%08d" , 0x400)
#MP Expand render("%08x" , 0x400)

And you expect to see the output

1024
00001024
00000400

Can Unimal do this? At first, it doesn’t look that way, because formats must be specified
literally and cannot be passed as arguments.

But here is an idea: can’t we create a Unimal statement, put it in a file and execute it from
there? This can be done indeed (please, see Samples\AppNotes\2\render.u):

#MPMacro render ;(format, number)

#MP Export Push

#MP Setstr cmd = {uJoin , "#mp", #1#, "#2#" }
#MP Export (0) “"temp"

#mp%emd

#MP Export Pop

#MP Include "temp"

#MPEndm

This is what’s happening here.
First, we save (Export Push) the current output stream.

Second, we create a string variable, cmd, which contains the Unimal target language
interface we want: the target language interface signature (#mp), the actual format (#1#,

which is substituted for accordingly), and the formal argument to render as a numeric value
(#2#). E.g., in the last macro invocation,

#MP Expand render("%08x" , 0x400)

cmd will have the value “#mp%08x#2#”

Third, we switch the output stream to a temporary file; we call it temp. Then we simply
render the string cmd; it goes to the file temp:

>type temp
#mMp%08x#H2#

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 2

Fourth, we restore (Export Pop) the previously saved output stream. This of course is
necessary by itself, just to continue what we were doing. But it also has a useful side effect:
the previous output stream (temp) is closed.

Now we simply include our temporary file which will do the actual rendering. The result of
invoking the macro (see render.u) is as desired.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

