Improving embedded software quality using an external preprocessor

Improving embedded software quality using
an external preprocessor

Ark Khasin
MacroExpressions

White paper

MacroExpressions

http://www.macroexpressions.com

© 2006 MacroExpressions http://www.macroexpressions.com

Improving embedded software quality using an external preprocessor

A simple example
shows how and
why improving
maintainability
and optimizing

constant data
naturally leadsto
a preprocessor

A smaller and faster code also gets to the target and starts
faster. All this is crucial for SoC and code delivered over slow
networks. Surprisingly big help comes from evaluating
conceptually constant data at compile time. To do this, an
external tool is required, as programming languages are not
expressive enough. A good preprocessor utility may be the
tool of choice, and provide additional perks.

Example: displaying status messages on the LCD

As a very simple yet realistic illustration, consider a task of
displaying pre-defined up-to-twenty-character “status”
messages on the LCD according to some status bit array. A
message is displayed for, say, 5 seconds, provided that the
corresponding bit is set, and then is replaced by the next
(modulo the number of status bits) message with a status bit
set.

A naive implementation plan and its drawbacks

A “naive” implementation say, in C, would probably define a
const array of pointers to const strings. The ordinal number of
the status bit would also be the index into the array of pointers,
so the corresponding message string is can be accessed.

There are two problems with this idea.

The first is memory consumption. Assuming four-byte pointers,
we've got five bytes of overhead per string (a pointer and the
terminating null character). For a twenty-byte payload, it's 25%.
If most messages are shorter than 20 characters, it's even
more. E.g. if the average length of the messages is 10
characters, we have 50% overhead. That’s not counting any
data alignment overhead. Dummy pointers corresponding to
undefined status bits have not been counted either.

The second problem is maintainability. If, for some reason, a bit
corresponding to some status had its number changed from 15
to 4, the array of pointers has to be modified accordingly. If a
previously undefined bit gets defined, or a previously defined bit
is no longer, then again, the array of pointers needs to be
updated.

Data optimization and growing maintainability probl ems

To address the first problem, we can choose a different data
structure.

Let’s have a (large) string comprising all message strings
concatenated together (and even without the terminating null).

Let’s further have an array of indices into this large string such
that the nth element of the array is the index to the beginning of
the nth message string. The last (extra) index in the array is the

© 2006 MacroExpressions http://www.macroexpressions.com 2

Improving embedded software quality using an external preprocessor

length of our large string. The length of the message n to
display is the difference between indices n+1 and n: no
information is lost.

Typically, two bytes would be enough to hold an index. Since the
large string has no terminating nulls, the overhead of this data
structure is 10% (down from 25%) or, with average counting,
20% (down from 50%), plus a fixed two-byte expense on the
last index.

Great. However, on the maintainability front things just got
much worse: Maintaining the array of indices is very error-
prone. Even if it was not, it would still be yet another thing to
maintain, thank you very much.

Preprocessor to the rescue

A zero-maintenance solution to both the original and the newly-
created maintainability problem is to define a status bit number
and the corresponding text message in a single statement, like
so:

BeginStatus
DefineStatus(3, “my fault”)
DefineStatus(8, “mea culpa”)

EndStatus

We want these statements to execute at compile time and
produce the source code with the bit array definition and the
constant data structure we invented previously.

To achieve this goal, we are willing to do an extra work (once!)
and describe, to some conversion tool, how to execute those
statements and produce the C source snippets that we want.

Guess what? We are talking about some preprocessor and about
writing macros for it.

To reiterate: we naturally identified a need in a preprocessor in
our effort to reduce (to zero if possible) error-prone
maintenance work, especially in cases of optimized data
structures.

A programming language may already have a built-in
preprocessor of its own, as is the case with C and C++. If such a
preprocessor exists and is expressive enough for the tasks,
that’s wonderful. Otherwise, we’ve got to use an external
preprocessor.

© 2006 MacroExpressions http://www.macroexpressions.com 3

Improving embedded software quality using an external preprocessor

Some tasks for the preprocessor to do

Here are some of the tasks where a good preprocessor can be of
great help.

There are many
project automation
problems that a
reprocessor can .
prep solve Tabulated functions
A hard-to-compute function can be tabulated for faster
performance. Tabulating at compile time removes the table
generating code from the final build. Additionally, the resulting
table resides in ROM, which saves precious RAM and, in some

applications, the need to test its integrity.

Preprocessed data

More generally, any data set may call for a processing algorithm
that requires one-time preprocessing of the data set.

Some of the examples include lookup tables, perfect hashes,
dictionary trees of all sorts etc.

When the data set is constant for the project, so is its associated
preprocessed (derived) data. In this case, the derived data can
be pre-computed at compile time. As with tabulated functions,
the challenge is to find a tool capable of sufficiently complex
compile-time processing.

Loop unrolling

A decision to unroll a time-critical loop should not be left to the
compiler’s heuristics: they have no knowledge of time criticality
in your application. Unrolling a loop manually eliminates a
runtime variable - the loop counter - but creates a
maintainability challenge (and an implied constant parameter,
the number of repetitions of the loop body).

Project configuration management

In a context of a project family, a good architecture for software
project configuration management is project-independent code
processing project definition data, the latter being of course
constant for a given project.

The project-dependent data have to be shared across disparate
languages (e.g., to a C source and to the linker command file)

Dedicated code generators vs. preprocessors
If a general-

pur pose An extreme case of a preprocessor is a dedicated tool working
preprocessor can for a specific data set. For instance, the macros in our example
do thejob, itis of status messages can take the form
prgferred toa 3 “my fault”
dedicated code 8 “mea culpa”
generator

© 2006 MacroExpressions http://www.macroexpressions.com 4

Improving embedded software quality using an external preprocessor

All the smarts of converting this to the C source we want are in
the tool itself; the data definition has no trace of what needs to
be done with it.

This approach is (or may be) better than none at all but is best
avoided if a suitable preprocessor is available. The first reason
for that is that a dedicated code generating tool (whether
written in C++ or Perl or anything) requires maintenance of its
own, or else the data design becomes unjustifiably rigid.

Secondly, there can be (and probably is, right in your project)
more than one data definition of this kind, which is to produce
an entirely different output, according to an entirely different
data design. It would therefore require an entirely different code
generator; this is very difficult to justify unless all data designs
are extremely stable.

Thirdly, it is highly desirable that our macros can be plugged in
an otherwise normal source file. This has to do with aesthetics
not to underestimate: the source code sprinkled with
preprocessor statements still preserves the look and feel of the
target programming language. Even more importantly, it has to
do with visibility (and linkage) of the generated output. Writing a
code generator supporting this feature is no small feat.

Of course, a solution to all these problems is to split the code
generator into two pieces: a conceptually simple yet flexible
common language to describe how we process our definitions,
and a common tool that recognizes and processes these
description statements in a perhaps otherwise normal source
file. This (of course) means a normal preprocessor.

A preprocessor What to look for in a preprocessor

should have When choosing a preprocessor, you may want to consider the
certain usability | following criteria:
and power
properties| The language style of the preprocessor
If preprocessor statements are planted into the source file, do
they really, really stand out (like C/C++ preprocessor and unlike
m4)?

Can reusable constructs be wrapped in macros and tucked away
in an include file, so that they can be invoked on as-needed
basis?

Can the same preprocessor language be used for different target
programming (and description) languages?

Error handling

If the preprocessing results in an error, is there a guarantee that
the generated source will not compile?

Is there a place where all errors are conveniently collected, even

© 2006 MacroExpressions http://www.macroexpressions.com 5

Improving embedded software quality using an external preprocessor

if multiple files are generated?

Flexibility and expressive power of the language

Does the preprocessor language meet your realistic needs? For
instance, how easy is it or is it possible to tabulate a trig
function? How easy is it or is it possible to create a lookup table
automatically?

A basic criterion, is it possible to arrange a re-scan of (a
compile-time loop over) a segment of the source code?

Another basic criterion, does the language provide sufficient
arithmetic capabilities?

Integration into the development environment

How easy is it to include the preprocessor in your Integrated
Development Environment, provided it supports inclusion of
third-party tools?

Can the preprocessor search specified include directories?

Can the preprocessor output include file dependencies for make-
driven build process?

Ability to output multiple files

In our example with status messages, the status bit array and
the message table may have (depending on coding policy) to go
to different files.

Data sharing across different target languages simply requires to
output several files.

Can the preprocessor do it?

Unimal 2.0is an Unimal - a solution from MacroExpressions

advanced MacroExpressions has developed a preprocessor to meet all the
pr eprocessor needs identified in this paper. To my best knowledge, it is,
mesting all the presently, the only preprocessor of this kind.

requirements | ynimal (http://www.macroexpressions.com/unimal.html) is an

advanced preprocessor independent of the target programming
languages. Industry-tested and with its claims proved, Unimal is
currently at version 2.0.

Unimal features

+ an ability to output more than one file, program-
controlled, for sharing data among different source files of
the target programming language(s)

» an ability to output dependencies on the included files, for
build process integration

» 32-bit arithmetic and math functions, for easy

© 2006 MacroExpressions http://www.macroexpressions.com 6

Improving embedded software quality using an external preprocessor

manipulation of constant data
» string operations common to preprocessing

+ an ability to scan a segment of input repeatedly, for
calculating values that cannot be evaluated in a single
pass

+ a well-developed macro facility, for encapsulating
common preprocessing patterns

+ a comprehensive error detection and reporting facility

Unimal syntax is very simple, due to clean separation of Unimal
statements and the target language.

Unimal statements are line-based and begin with a signature
#MP; all other lines are considered target language to be copied
to the output.

The target language lines may contain a special markup called
Unimal target language interface; this markup is replaced with
the corresponding Unimal parameters.

Conclusion

Maintaining and managing optimized code across a family of
projects requires serious attention to the data structures that
are constant within a given project build. It is advantageous to
use a preprocessor to pre-compute any derived data and to
share data among different languages.

MacroExpressions offers a solution with Unimal, an advanced
preprocessor which allows simple solutions for simple problems
and makes complex solutions possible. It seamlessly integrates
with established make-style build processes and it is easy to
integrate Unimal into the Integrated Development Environments
supporting third-party tools. For more on Unimal, visit
http://www.macroexpressions.com/unimal.html.

© 2006 MacroExpressions http://www.macroexpressions.com 7

