C-SLang: Portable script language embedded in C code

C-SlLang

Portable script language embedded in C code

Enhancing embedded systems testability

Version 2.0

MacroExpressions
http://www.macroexpressions.com

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 1

Table of Contents

0. C-SLANG: WHAT'S NEW IN 2.0 ettt et e et e et e e e e e e et e et e e e b e et s eanssanesanseanees 3
1. C-SLANG: EXECUTIVE SUMMARY ...ttt et e et e e e s e e e et s s s en e en s ennsenesenseenaasaaeeaans 3
I VU T = = 3
111 (01 oT07= 00 o [>T a0 11 xR 3
112 (@ g T oo 7= [0 o TT=To |00 1S] o= S 4
113 V=T a1W =t (L To TS U o] oo SR 4
114 (0 0= V=TS S U = = 4
1.2 WHAT DOESC-SLANG CONSIST O ..uieuiitiitiie ittt eetee et e et eea et sememaa e s eaeeaeea et eea st sansensenseneennen 4..
1.3 WHAT MAKES C-SLANG DIFFERENT? ... euititiettteeeea ettt ettt et s e semmemea s eaeeae et easanseneenseneraernesaneens 4...
2. ANALYSIS AND MOTIVATION . ..ottt et e e e e e et e s e et ea s b e et s ea e s e e saneeanss 5
2.1 SOME EXAMPLES ... ettt et ettt e e et et e e et e e ettt e et —a et 5
211 S a1t e (R TS o= TR 5
2.1.2 [BL011Y a1 Ka =0 F= o FS Y o0 o [T 5
2.2 PROBLEM ANALY SIS .. euitiittit et ee ettt ettt et e et e e e e e et e et e e et e e ea e ea e ea e ea st e e e eanenseneeaeesaeanen 5
221 (000 (Yo =01 = 10 LSS S 5
2.2.2 DaAta GCCESS ... oo 6
2.3 C-SLANG DESIGNGOALS. .. et tititet ettt ettt e e e e e et e e e s et e e e e e e et eae st e e s e s e e e rnnsaaeaesnnen 6
3. THE C-SLANG SOLUTION ... ittt e e e e et e e e st e et e e e s s e e e e s s san s en s enseeneeeneens 6
3.1 [(1S W YN 11 U 7N] = 6
3.2 C-SLANG DATA TYPES AND A DDRESSSPACES. ...t itutteeeeee ettt te et te et e e aee s ea st e e e e e e raeraeens 6
3.3 INSTRUCTIONSET OUTLINE ... ctetitieeete et eeae et e e et e e eaen e ea e et e ea s s e s e ea s eneeaeeassa et sanssnenneneeneeens 8
3.4 C-SLANG VIRTUAL IMACHINE .. ettt et e et e e e e e e e et e e e et e e e s e s e e e e e e eaeea e ea et e enens 8
T T O Y I N S N 1 175G 9
351 S o] SR 9
35.2 [T 01 10 9
353 FUNCLION REGISITALION ...ttt e e e e sse e e sre e e ssneeenseeeseeesneeesnneeennneennnens 9
354 (0010000 = 01 RT= 10 gTE (=S 0 7= (ol S 9
355 Symbolic Names and Other IMACTOS.........eiieieiieeiie e ere e see e st e et e e rne e e nsaeesnneesnneas 9
L ©] 1NV T O] 2N 1L 10
4.1 C-SLANG SCRIPT REPRESENTATIONS. .. teuituttteett ittt teastea e e et ea e ea e eea e e eaera et aeasaasanseneenernaenns 10
4.1.1 Source, Bytecode and Bytecode Sizein Compiled FOrmat..........cccoocevvieeiveeesiee s 10
4.1.2 Exporting a C-S_ang cript Bytecode to Portable FOrmat..........ooovvevieevceeiee e 10
4.2 RUNNING C-SLANG ON AVIRTUAL MACHINE ... ititiieete et e e e e e e s e et e e e e e eneeneeaaeanns 12
421 TR U= T o = TSV 1 12
4.2.1.1 SVIRM-related data tYPES .. .cceiiiiei i et eeee e e e e e e e e e et et e e e e et e e e e e et e e e e ar e aaae 12
4.2.1.2 SVIRM iNitialiZation FUNCHONSuuiiiitt et eeeee e e e e e e e et e e et e e esteeean e es st eesba e esstnaessaneeearans 13
4.2.2 U 00Tl WO = o o o] £ 13
G T B 1= =10 T 1 1= ==Y o] = 14
431 S 110 | L3S (= o J = o U1 4 oo PSS 14
4.3.2 2 TS (o g1 14
O O] V| =TI =5 T] N 1 O 0] =3 T 14
5. EXAMPLES OF C-SLANG SCRIP T S, ettt ittt et ettt et e e e e e e e be e e e e ea e raeeaneeans 15
5.1 (SAMPLEL.C) USER MACROScuuuiietitttueestettseeeeettaseeeettsaeeeetaneeeeatanaeeeesnnaaerestnnsaeeeennnseernnnees 15
5.2 (SAMPLE2.C) A STRING PROBLEM.....uitttttuuieesetttneeteetnnseeseassneesnnanaeeestnnaesesssnaeeeesnnnaaerensnnnaereen 15
5.3 (SAMPLE3.C) A SIMPLIFIED SAE J1978VESSAGE RESPONSE......uuiievrtiuueereetnnseerresnnsseeseninasernnnnaaeees 16
6. INSTRUCTION SET REFERENCE........ ittt ettt e e e e e et e e eeans 18

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 2

T A =1 N = =Y N 18
6.2 ADDRESSSPACES ANDARITHMETIC TYPES OFOPERANDS. .. .uuittitnetieeneeneeneeteeaeetieastseneeennenerneraaeens 19
6.3 MOVE CLASS INSTRUCTIONS. .. cutititettteteeneee e et eea et ea st eaeaeeaeeaeeassaaeasansansenernsenersseastaenaeneen 19
6.3.1 MOVE, MOVEL ... 19
6.3.2 [Io7= 1o FAN (o =To AN I 0 =0) G e ¥=o) R 20
6.3.3 S (0] STAWIS (0] =Y A IS (0] (=) O (0] (=Y 20
6.3.4 MOVEAX, MOVEXA..... .o 21
6.3.5 S (07N« 21
6.4 ARITHMETIC AND LOGIC CLASSINSTRUCTIONS. ...uutuiitititet et eeeneeneeaeeteeasteeasenseneeneeneeseesseaneanaenss 21
6.4.1 Instructions with Opcodes WithOUL €NAiNGS.......cccveeeiieeiiee e 22
6.4.2 Instructionswith Opcodes With €NdiNGS.........c.vviiieeiie e 22
6.5 CONTROL CLASSINSTRUCTIONS .. cutittitetttteteea e ea ettt ea st e eaeeaeeaeeasaaetsan s eenernernersaeesenens 22
6.5.1 O 1 23
6.5.2 1 23
6.5.3 1 0 "o P RSSPRR 23
6.6 MISCELLANEOUSCLASS INSTRUCTIONS .. .uuittitneteeteen ettt ettt tt e st e e e e eaeteeasasasensenreneeneeaeseaseennen 24
6.6.1 10 o 24
6.6.2 T | oo o J S 24
6.6.3 Repeat, REPEALA, REPEALX ... eeeeeetiie ettt e et e e st e e s st e e e s eeeeesnneeeeeessaeeeaneneeennnnnens 24
6.6.4 (O 07 o: (= 25
6.6.5 ComputedCall and COmMPULEAIUMeviueeereeeeieeeeeerteeeseeeseeeseesenreeesseeesseeesneeeaneeenseeesseeesnns 26
6.6.6 (O N 26
6.6.7 (O 26
6.6.8 (@000) =g To [0 1 ¢/ 2200 27
6.6.9 o =TT = A 27
LSS 700 O T YV 1 2 27
7. FREQUENTLY ASKED QUESTIONS ...ttt ettt e et e et e e enn e e et e e aaeeeeas 27
7.1 MY EMBEDDED APPLICATION DOES NOT USEC RUNTIME LIBRARY. CAN | STILL USEC-SLANG?............. 27
7.2 HOW MANY DIFFERENT SCRIPTS CAN RUN SIMULTANEOUSLY ..vuiviiiieieeceeet et e e e e eemmee e e 28
7.3 MY OPERATING ENVIRONMENT ALLOWS PREEMPTIVE AND COOPERATIVE TASKS HOw DOl SCHEDULE
L8N LS 1= O] Y N[R Y01 = = >N 28
7.4 DOI| NEED SEPARATE CONTROL STACKS FOR DIFFERENT SCRIFS .. .euitiinieniinietieeerieeeeeneeneensenmenes 28
7.5 HOWDO! DEBUG AC-SLANG SCRIPT?...cuitiitiiteteee e e ee e et eae st smmemma e e ea e ea et eaeean s e senseneeneeraeaneen 28

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 3

0. C-SLang: What's new in 2.0?
(Those unfamiliar with C-SLang can safely skip théstion.)

Version 2.0 is a major rewrite. Here is the listb&nges:

1. C-SLang script representation is now independghick with the compiler; it is conforming to C

standard.

Accordingly, the syntax of a script header Haghty changed.

Repeat LoadAandRepeat LoadX operations now do useful things.

StoreAExt operation added.

CallNative operations are no longer supported since thetifomality is covered by virtual physical

input/output operations.

Integral C types of input, temporary and outfariables, as well as of registers, are now sugdiethe

user to better match the platform. A template headprovided.

7. C-SlLang virtual machine no longer owns the romtiol structure; it is passed as an argument. ,Tthes
virtual machine is reentrant and, in particulargtid-safe.

8. Virtual machine now performs runtime array boarmes check.

9. Debug interface is added via single step analpr@int facilities.

10. Script always executes starting from the fiegfistered function.

arwp

o

1. C-SLang: Executive Summary

1.1 What is it for?

C-SLang is a simple script language optimized @mtecdensity, together with its runtime environment.

The design of C-SLang is geared primarily towarel ghecific needs of small-size embedded systems:
e Off-board diagnostics
¢ On-board diagnostics
e Manufacturing support
e Quality assurance

Moreover, the small size of C-SLang scripts ang ganall memory footprint of the runtime environmemdke it
suitable for writing any component where memorgtipremium and execution time is available. (Seeeso
examples below.)

1.1.1 Off-board diagnostics

Once a device is released, the test procedure tilagshange. Example: automotive exhaust test secgleA
common solution is tdownload the test code from the test tool to the devicecunest and have the device
execute the downloaded code.

C-SLang enables to have machine-independent coaefpwhich is fast to download.

The test code does not change when the CPU ofeifieedchanges; this is beneficial for both the weraf the
device and for the OEM (original equipment manufest) or system integrator, which may be a diffeeantity.
With some standardization effort on the OEM sitle, test code may even be the same for differerdorsh
devices.

This allows to have a stable asset library of teats/be different between the vendor and the OE&$uUR:
saving time and costs of test development and reaamice.

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 4

1.1.2 On-board diagnostics

Certain self-tests, whether power-on or continuaus,built in the device. Usually they do not regulazing
speed of execution.

C-SLang allows to write those tests in a very cathpad machine-independent format.
Those tests can form a test asset library.

1.1.3 Manufacturing support

There are tests that need to be run only once gltin@ device manufacture.

For instance, when the ECU (electronic control uisifirst assembled, it is reasonable to testritnfiissing,
crossed or shorted connections, and for basicifumadity of the on- and off-chip peripherals. Wham ECU is
attached to the actuators (be it an antenna oearpatic unit), a functional test of the final asbinis in order.

C-SLang enables not to have these tests builtuintdodownload and execute them as needed. Thigesdhe
code memory footprint and increases the flexibilitypdating the test sets. Moreover, the funclitests, being
in machine-independent format, may be independahtmarticular implementation of the ECU. Theyrfam
an asset library.

1.1.4 Quality assurance

When the device fails, the problem at hand isrtd fhe root cause of the failure and trace it baadware
component failure, a hardware design error, softviarg or manufacturing process problem. This reguir
explorative testing; it is not known in advance attest pattern would identify the problem spot.

C-SLang allows to download and execute test rogtihat were not envisioned in advance. Moreover ngw
tests, being machine-independent format, can dor&ito a cumulative asset library of exploratests.

1.2 What does C-SLang consist of?

C-SLang scripts can be used as compiled-in or galge code. “Compiled-in” means that the scriginl just a
strangely looking C source code, is compiled ankldd with the rest of the application. “Portabledans that the
script can take a form of byte sequence, whichbeaaxecuted in an application other than the oed tescreate
it.
Thus, C-SLang comprises the following components:
e C-SlLang language — a simple and compact scripulage
e C-SlLang runtime environment, along with C-SLang Ad&iplication programmer’s interface) to
initialize and run a C-SLang script
e Optional C-SLang debug API to debug C-SLang sciigtsl, strictly speaking, it is a part of the rumei
environment
< Optional C-SLang bytecode export facility with @&n simple API.

1.3 What makes C-SLang different?

C-SLang source code is compiled into interpretédsmat by C compiler. Therefore, by linking scrgaurce with
the interpreter, you get the compiled script autiitally embedded in your application. This allofes, instance,
to fully debug a C-SLang code in any luxurious gnéged development environment, even if the tagat
naughty microcontroller. By linking script sourcétwthe exporter, you can convert the automatiocadiyipiled
script into completely portable and relocatablerfat.

This is what makes C-SLang unique:

1. No additional tools needed. C-SLang source dempiled into bytecode by a standard C compiler.
Therefore, C-SLang source is simply unusually logkC source. In fact, the output of the C
preprocessor is a bunchainst data objects.

2. The main design goal was to achieve good codsitye Thus, C-SLang looks rather like assembler
language of a single-address machine, extendedswitfie-instruction search, calculated call gotb

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 5

and some other advanced instructions. The desigringgired by architectures and instruction sets of
6800, 8086 and 8080 microprocessors, FORTRAN aval Ja

3. 4-dimensional address space of the virtual nmectsi optimized for small components. It consi$ts o
distinct arrays of what is considered script’s itspwutputs, temporary variables, as well as (aijtu
physical inputs and outputs.

2. Analysis and Motivation

In both embedded and desktop applications, therenany instances where we don't need any procesgeaeg,
but rather we want to spend as little memory asiples Here are some generic examples.

2.1 Some Examples

2.1.1 Event-driven software

A common feature of such applications (or, ratkemponents) is that they comprise a system ofigecto one
or few events out of many. These include humarnrfaate, some slow communications protocols, off-line
diagnostic procedures etc. So, the scenario at isasuth that we have a large number of eventanallie;
accordingly, it requires a pretty respectable @ide. At the same time, just a few events mustpeiled at once,
SO processing time is not an issue.

2.1.2 Downloadable code

In embedded applications, downloadable code is soméoaded in the RAM of the embedded microcongroll
and executed from there. Such programs can bemseftware and/or hardware troubleshooting, mastufing
and quality control of the device in question. tfddion, downloadable code can be shipped from one
microcontroller to another, as is in case of aicumibleN: one standby device.

In both classes of applications, execution speedtritical, whereas saving precious RAM and R{DM
embedded systems is of real importance.

2.2 Problem Analysis

A situation when “speed for size” deal is requiigdiell known in computing community. A naturalsibn is to
replace straight machine code with a common bailkechanism of interpreting a (more or less) sinspiting
or interpreted language. Such a scripting langsageld be designed to be fairly compact and eagyite in. A
good example i3cl/Tk for windowing systems programming.

This need seems to be well met, with interpretaduages from BASIC and Forth to Perl and Javawat's
the need in yet another language? Well, from emdibdgistems prospective, there are several probigttms
existing languages. They are discussed below:

2.2.1 Code generation issues

Typically, interpreted code must be stored in somermediate format, or bytecode. This is requietoth save
the size of representation and improve performafiices not true for JavaScript, for instance, + lmok at the
size of “interpreters”!)

To generate bytecode, we need a separate utilitgther we want to call it compiler or not. This ieaately
creates at least three problems:

First, it complicates project management, since titility must be subject to archiving and verstomtrol along
with the standard software toolchain.

Second, our script in source format cannot be dtioreur project’s normal source file; this cregtesblems with
linking a project, especially for ROM-based systems

Third, and for the same reason, it is extremelglharstatically embed the scripts in our applicatibhe latter is
not true, for instance, for p-code, but then p-dsdaund to the application in which it is stowet cannot be
exported at runtime. That's either one way or aeoth

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 6

2.2.2 Data access

As long as a script is written in a self-contaif@uguage, it is not a straightforward task to ageadata interface
between our “normal” application and a script wetv@ use. Usually, a well-defined interface protas
required, and maintaining it comes at a premiunte@t of extra code size).

2.3 C-SLang Design Goals
Our design goals are to address the above-mentfmobtems, in the first place. This means the fuithay:

Translation from human-readable script to intemareeadable bytecode must be done at compile tinmedans
of a standard compiler. This eliminates the neeahirextra tool and automatically makes the scripMRble (if
needed). Anyway, if we need a script, it can bkddhtogether with application!

To cater to the needs of downloadable code, we tamive a bytecode export capability. The logicashpiled-
in script leads to a linked-in export module. Expdrformat should be relocatable (independentant kddress)
and portable (platform-independent). As an addeaibowe would be able debug scripts in any devebom
environment we like and then export them in soeame or bytecode form to the real target.

A subtle additional benefit of such an approackréhare odd microcontrollers out there, which dbaxecute
code from certain areas of RAM. Since C-SLang lmdeds actually data, this behavior does not poge a
problem.

Then, the script interpreter is split in two pied@$ a pretty hollow virtual machine without itso data areas and
(b) a mechanism to tune it to actual data dynanyigaist before running a script. One can see haranalogy
with the interactions between formal and actuahpeaters of a subroutine. This approach solvesidedeace
problems.

Additionally, the set of language operators andresking modes should be chosen to reach a good corise
between complexity of the interpreter (= code site} speed of interpretation and the size of logtecFor best
code density, the design is two-tier: common op@natare optimized for code density, and actiomas #ne more
complex can be expresseghsonably well (not to over-inflate the interpreter).

3. The C-SLang Solution

To meet the design objectives stated earlier, @&sript Language, or, for short, C-SLang, has lbeeated. It
is described below.

3.1 Host Language
C-SLang is implemented in portable C. One reastiatC is so popular. In fact, for some microcolrs it

may be the only high-level language available.dditon, this choice allows off-line debugging bkt
functionality of a given script, say, on a PC, gsifor example, Microsoft VC/C++ for implementation

3.2 C-SLang Data Types and Address Spaces

To achieve best code density, C-SLang Virtual Maehgretty closely emulates single-address macltican be
thought of as a small processor with a pretty adtiitecture.

C-SLang has two virtual registers: the Accumul#tand the Index Register X, and three () smalesiddress
spaces for:

e Input variables

e Output variables

e Temporary variables

Address spaces deserve some discussion. A typicabpnocessor has one or two address spaces, degesrd

whether I/0Os are memory-mapped or have their sepapace. In small tasks for which C-SLang is dexigit is
usually possible to identify three kinds of memaddressable entities — inputs, outputs and tempetarage. In

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 7

C-SLang, they are considered to be separate amagsidress spaces. Inputs are considered readhoislyhe
responsibility of the code external to C-SLangiltarf the inputs. For example, in communicatioqgpkcation,
message processing can be implemented in C-SLarhisl case, input would contain a received messatgk
output, - response message.

The types of registers and variables are integrd&a types; they must bgedef ’ed in the mandatory user-
supplied header filecsl_opt.h ™

e reg_t forthe registers

e inpvar _t for the input variables

e« tenpvar _t for the temporary variables and

e outpvar _t for the output variables

A sample €sl_opt.h " file that comes with the C-SLang distribution hhs following definitions:

typedef long reg t;

typedef unsigned char i npvar _t;
typedef unsigned short tempvar t;
typedef unsigned char out pvar _t;

These definitions may or may not meet your neetd,they may be changed as appropriate.
Note that if you choose an unsigned typerfeg_t , the Accumulator will never be negative, so the
corresponding conditional operations will neverkecuted.

Literals are always considered of tyesigned char . If you need wider numbers, you'll have to makenth
in the registers or variables.

While we are at it, C-SLang makes no assumptiothemumber of bits in ehar ; it relies on the constant
CHAR_BIT#define 'din <limits.h >, Usually, it is 8 for a microcontroller and 16 & DSP. In an unlikely
case your compiler comes withouimsits.h >, you car#define CHAR_BIT yourself according to your
platform. Whenever a ‘byte’ is mentioned, the tyosigned char is meant.

Input, output and temporary variables are arrarige@dspective contiguous arrays. The maximum sizbease
arrays must fit a byte (e.g., 255 maxiHAR_BITis 8). Indices beyond that limit could only be essed with
indexed Move instructions and, for simplicity, awa presently supported. This is not a principteitation and
can be removed if such a need is identified.

To access a variable (or a literal), you specyghly speaking, the type and the index, sepatate@dmma.
E.g.,

Li teral ,5 hasthe typensigned char and the value 5.

I npVar ,6 has the typénpvar _t and the value of whatever is stored in the elerfesftthe array of input
variables.

C-SLang also uses a much more “virtual” addressespalled virtual physical input/outpitRl O). The
immediate motivation for this “type” is providingnanterface to the physical inputs and outputdefriative
hardware. The idea is that the application provtdesfunctions with the following prototypes:
e shortint inp_func(unsigned ionum, reg_t *value);
e shortint outp_func(unsigned ionum, outfunc_arg_t value);
whereout f unc_arg_t type istypedef ’‘edin “csl opth " bythe user (andiseg _t inthe
default definition).

The first function reads and the “input port” bethort number and returns the value read; the demoa writes a
value to the “output port” by the port number. Eithendtion returns a user-defined error code, 0 beikKg O

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 8

Whatever the initial motivation though, notice tirgtut and output functions can do pretty much laimg they
are written to do. So, this pair of functions cituges the only interface to the target machine.

3.3 Instruction Set Outline

Complete reference of C-SLang instruction setvegiin a separate section. Here we only take apgknat the
“big picture”.

C-SLang supports loading and storing data to aom fregisters, addition, subtraction and logicalrapens. It
also supports copying data from one location tdteerdoypassing the registers.

Removed from the standard set are comparisonthdar sole purpose is the following jump. Inste@d$SLang
provides jumps, calls and returns conditional anulue in the Accumulator.

Jumps are considered as serious as calls. C-Slrangigs (conditional and unconditional) calls anohps to
functions, i.e., contiguous named fragments of code. Thexaa jumps within a function. This makes it harder
(but not impossible) to write spaghetti code.

In order to improve code density, C-SLang impleragnbre advanced instructions, such as:
e« Minimum - computes the lesser of the Accumulator and tleeaol
e MulDiv — multipliesand divides the Accumulator
e Loop andEndLoop - to arrange simple loops
e CheckList - provides a search for a match to the Accumuhzbre

Some instructions supportRepeat prefix, which modifies the behavior of the insttion; typically, by
repeating its execution.

The only true code address arithmetic is rudimegnigat it looks sufficient. It is computed call (jomp) where
control is passed to one of several functions basethe content of the Accumulator. These instomgiare
reminiscent of “arithmetic IF” in FORTRAN and rebp special order of function registry in the scgte the
reference below).

A variable of any data type (except literals) iagidered to be an array element. In instructioppsrting repeat
prefix (see below) and/or indexing, repeat countad/or index register X are considered additioffabts to the
array. For instance, if the operand in an indexpsuting instruction iSenpVar ,5 and X=3, the operation will
actually be performed ofienpVar ,8 (=5+3). This provides sufficient (FORTRAN-equiviaigpower of data
address arithmetic.

3.4 C-SLang Virtual Machine

C-SLang virtual machine (SVIRM) is a mapping of Ca8g syntactic elements to the actual data strastut
“fleshes out” the actual arrays of input, outpudl &emporary variables, as well as the native harehivaerface
(VPIO functions).

A SVIRM may be configured on the fly or statically;any case, its definition has no reference @%Lang
script to run. This provides maximum flexibility.

To run a script, a SVIRM runtime environment mussffibst initialized. It means that a data structomast be
filled out to link together the C-SLang script, tB&IRM to run it on, theontrol stack to keep track of the script
flow control, as well as storage for C-SLang reggistand misc. data.

These concepts are discussed in detail in a sentiomy.

It's worth making two notes here.

First, if the script was run on a runtime enviromt¢he latter needs to be initialized again table to run a
script, whether the same or a different one.

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 9

Second, when a C-SLang script uses VPIO operandiyibusly assumes certain functionality provitgdhe
input and the output functions. However, theseftione are supplied via a SVIRM, and so, they apassted
from the script. Unless the VPIO functions are ensal for the device, a mismatch is possible, amgthe
programmer’s responsibility to link the script witihe right SVIRM. But this is also an added flektii by
switching, e.g., the input function, you can disoect the script from the real physical inputs @ tkevice and,
say, play back a pre-recorded sequence of inphis.rmay be very helpful in tasks like failure arsidy

3.5 C-SLang Syntax
A C-SLang is a C source code; as such, it is fnpertiand blank characters are ignored. It is hahdwever, to

treatit most of the time as line-based: each operator takes its own lirs¢ gjsi a normal Assembly language. An
operator can start at any position on the line.

3.5.1 Script
C-SLang script starts with the statement
ScriptStart(<script_nane>)

and ends with the statement
EndScri pt.

There can be only one script per source file. ftassible, however, to have multiple script files.

3.5.2 Functions

The next hierarchy level is Function. Syntax:
Functi on (<nane>)

The script for a function continues until the sta¢@tEndFunct i on is encountered. Example:
Funct i on(first)

... <Operators> ...
EndFuncti on

Here, the functioffirst lasts until theendFunction statement.
Functions do not have arguments: They all openmateocnmon data space.

3.5.3 Function Registration

A function can only be executed if it is registenedhe script. Each script starts with registratszction.
Syntax:
RegSt art (

RegFunc(<functi on_nane>)

RegFunc(<functi on_nane>)
)

RegSt art must immediately follovst art Scri pt statement.

3.5.4 Comments and Whitespaces

Since C-SLang source code is in fact a C file, @Gig).allows normal C-style commentsmultiline */
and//single-line , if the latter is supported by the C compiler.

Extra whitespaces (spaces and tabs) can be sptiakbeind as desired.

3.5.5 Symbolic Names and Other Macros

Symbolic names may b#&lefine ’d for use instead of numbers as needed. They tdenihe same as C-SLang
keywords and opcodes, of course.

Actually, C-SLang accepts C macrtdefine 'ing new constructs, including function-like macrdsis
automatically gives some macro capabilities to GuSgl.

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 1C

4. Using C-SLang
4.1 C-SLang Script Representations

4.1.1 Source, Bytecode and Bytecode Size in Compiled Format

A C-SLang script first appears in a C source fdeaa oddly looking fragment of code. It is autorcety
converted inta@onst data, and this is what is called “compiled forrh&otice that script in compiled format
ends up in ROM if the application is ROMable. Aftempiling a C-SLang script, the result is a buoth
initialized constants in constants’ area (be itisag segment or group, depending on the platform).

Note that to compile a script, the header fislslef.h andcslpubl.h must be#include 'd.

The size of the script can be calculated as fotllows
3* sizeof (charconst *) per script
+ sizeof (charconst *) *number-of-registered-functions
+ the sum of lengths of all functions

The length of a function is the sum of lengthslbita instructions plus 1, rounded up to the nalignment
boundary forchar const array.

Example: consider a trivial script
Scri pt St art (GoofyExample)
RegSt art (
RegFunc(DoNothing)
)

Funct i on(DoNothing)
EndFuncti on
EndScri pt

Assuming all pointers are four bytes long, thispdiakes 3*4 per script + 4*1 for registered fuoos + 1 byte
for an empty function, totaling 17 bytes.

Notel: If your compiler pads const character arrays talggnment boundary, the length of a function,tfoe
purpose of this calculation, should be roundedoufn¢ nearest boundary. The example above wouldgive 20
bytes.

Note 2: Some compilers treat a C construct used in C-Slsarigt as suspicious; they issue a warning. Some
compilers may even generate an error. In either,gasl can work around this by inserting a line
#define CSL_CONST

before including C-SLang headers. The price fot than intermediate pointer of the script becoma@s-const,
S0 a script would carry a pointer-size RAM overhead

4.1.2 Exporting a C-SLang Script Bytecode to Portable Format

A C-SlLang script in compiled format is automatigajenerated and is ROMable all right, but it istinei
portable nor relocatable. This is not because 8L.@ng language itself but because of limitation€ qfre-
processor. To convert compiled format into portdbienat, use the functio@ SLangBytecodeExport . Here
are the prototypes:

typedef void Byt eDunp_t(int ¢, void *arg);

extern int CSLangByt ecodeExport (CSLscri pt _t script, Byt eDunp_t *emitFunc,
void *arg);

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 11

CSLangByt ecodeExport takes three argumentsC8Lscri pt _t C-SLang script in compiled format, a
pointer to abyte export function and a pointer argument passed transggrtat bytecode export function.

A bytecode export function is a user-supplied \faitction that takes aimt argument — a byte of the script in
export format, and woid * pointer that is interpreted as appropriate forghdicular function.

CSLangByt ecodeExport calls the byte export function for each byte pimty and it can do with those bytes
whatever it is designed for, e.g.:

e Tocollect as an array of bytes,

e Tosavein a disk file,

e To send over network,

< Alternatively, just to collect statistics about theript.

CSLangByt ecodeExport calls the emit function repeatedly for every cansiee byte of the exported script.
The bytes are emitted in the following order

< Bytecode length (in bytes; including the lengthelsyt high byte

< Bytecode length, low byte

< The number of functions in the script

< Function registry, multiple bytes

< Bytecode of the registered function, multiple bytes

For example, exporting a trivial script from theyious section, the following bytes would be enditte
0, 6 (length), 1 (number of functions), 0, 5 (dffséthe function), 0Xxx (function termination sywibthe only
functional byte in the bytecode): total of 6 bytes.

For an example, let's make a simple function calitng the length of the script in exported format:

struct length { unsigned char len[2]; unsigned short byte count};
void len_dump(int c, void *arg)
{
struct len_dump *p = arg;
if (p->byte_count < 2) p->len[p->byte_count++] = (unsigned char)c;
[* do nothing after collecting the two length bytes *
}
int script_length(CSLscri pt _t script)
{
struct length L;
int ret;
L.byte_count = 0;
ret = CSLangByt ecodeExpor t (script, len_dump, &L);
if (ret<0) return ret; [* error code */
return (L.len[0]<<CHAR_BIT)|L.len[1];
}

For debugging purposes one can use an emit funai@mple as

unsigned char myBytecode[200];
int mycount=0;

void mydump(int c)

myBytecode[mycount++] = (unsigned char)c;

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 12

This simply fills character array with emitted byoele. Real world emit function(s) can be, of counsere
sophisticated. To create download modules writte@4SLang, emit function might write its argumeharacter
to the output file on disk.

4.2 Running C-SLang on a Virtual Machine

There can be several C-SLang virtual machines (8M)Rn an application; you can choose, for instameeun
one script on different SVIRMs or different scripts a single SVIRM. To pick a SVIRM, we define # a
variable of typesSVI RM t . (To demystify it:SVI RM t is simply astruct typetypedef ’ed in the header
cslpubl.h . So, if you find instruction by example inadequat®i can see all the fields of the structure im th
header.)

4.2.1 Initializing a SVIRM

42.1.1 SVIRM-related data types

To run a C-SLang script, a C-SLang virtual machB8M¥IRM, must be firsinitialized. This means, it must be told
what “personality” to assume, that is, what are its

Input array

Output array

Temporary array

Input read function

Output write function

agrwdPE

This information is aggregated in the following @&gpe (from the header fitslpubl.h):

[* -- C-SLang Virtual Machine data type -- */
typedef struct SVIRM_Y{

i npbuf _t inp;

out pbuf _t outp;

t empbuf _t tempbuf;

I npFunc_t *infunc;

Qut pFunc_t *outfunc;
} SVIRM t;

where thd npFunc_t andQut pFunc_t are the types of “virtual physical” input and outfunctions
respectively:

typedef reg_t I npFunc_t (unsigned ionum);
typedef short int CQutpFunc_t (unsigned ionum, outfunc_arg t value);

andi npbuf _t, out pbuf t, tenpbuf _t, are the types of arrays of inputs, outputs antptearies
respectively, specified by the start pointer arallémgth:
typedef struct {
const inpvar_t *buf;
unsigned char size;
} inpbuf _t;

typedef struct {
outpvar_t *buf;
unsigned char size;
} out pbuf t;

typedef struct {
tempvar_t *buf;

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 13

unsigned char size;
} tempbuf t;

SVI RM t structures can be keponst if so desired.

Additionally, the SVIRM will use two RAM areas whikunning the script.
One contains current run information — emulatedsters, status and so on; it has fixed size, aisdgénerally of
no interest to the user. It must be instantiatedgh in the user code, like
CSLangRun_t myrun;
S0, its typeCSLangRun_t , is provided in a header automatically includethwlipubl.h

The second RAM data element is a so-called costaak; it is used to keep track of C-SLang conssrtitat
change natural program flow of the script (e.gacfion calls). The right size of control stack ig/ane’s guess,
just as size of normal stack in normal programmifigou know in advance what scripts you are gdimgun,
you can choose the size at compile time. One wayother, the user must define an array of GeSt ack_t
(#define 'din slpubl.Lh) to the SVIRM, something like

Ct | Stack_t ctlstacklMAX_DEPTH];
and supply it in your program to the SVIRM.

421.2 SVIRM initialization functions

To initialize a SVIRM, you call one of the two fuians, depending on whether the script to run isompiled or
in exported format. As always, freedom (of confagtion) comes at a price. Initialization of SVIRMsemething
that very few people will call elegant.

If the script is in compiled format, the initialization functigmototype is this:
int CSLangl ni t Com(CSLangRun_t *run, CSLscri pt _t script,
SVIRM t const *svirm, Ct | Stack_t *stack, unsigned short n);

Here,run is the pointer to runtime environment to be initied, script is the script to rusyirm is the memory
and I/O configurationstack is the pointer to a control stack array anid the number of elements in the control
stack array.

The function returns an error code, 0 being “OKrfdE codes are described in a section further helow

If the script is in exported format, the initialization functignototype is this:
int CSLangl ni t Exp(CSLangRun_t *run, const unsigned char *script,

SVIRM t const *svirm, Ct | Stack_t *stack, unsigned short n);
The only difference is the type of teeript argument, which in exported format is a sequefftgtes.

This interface is flexible enough to allow reusingmory areas via mix-and-match: One can initiatize or
several run structures with different scripts @ $ame script, and using the same or different S\IBr control
stacks.

In particular, combining a script with different 88Ms can produce rather cool effects. For instatwe,
disconnect the C-SLang engine from physical inplite system and have it use pre-recorded inpajeq
back, you just replace the SVIRM with another SVIRMh accordingly different input function.

4.2.2 Running C-SLang scripts

To run a C-SLang script, after runtime environmtest been initialized, you just call the functi@BLangExec;
its prototype is
int CSLangExec(CSLangRun_t *run);

The function returns a completion co@SL_DONEndicating the successful end of the script exeout

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 14

4.3 Debug Interface

If C-SLang engine is compiled witiSL_DEBUG#define 'd in the header filesl_opt.h (default) then a
limited debug interface is available. It can befuisier debugging C-SLang scripts, since the pragreer can
monitor the script execution progress and inspebtip members of th€SLangRun_t structure (such as the
virtual registers)

4.3.1 Single-Step Execution

After runtime environment has been initialized, yaun callSCLangSet Si ngl eSt ep to enable or disable
(default) single-step execution. The function’stptgpe is
void SClLangSet Si ngl eSt ep(CSLangRun_t *run, unsigned char sstep);

If sstep is a zero, single step is disabled (default); wthse, it is enabled.

If single step is enable@SLangExec returns after executing one C-SLang instructibthére were no errors, it
returnsCSL_DONEf the end of the script was reachedG38L_STEP_COMPLETE@herwise. To continue
script execution afte€SLangExec returnsCSL_STEP_COMPLETERall it again. Some sort of a loop is a
likely arrangement here.

Single step can be enabled or disabled at any time.

4.3.2 Breakpoints

A breakpoint specifies the function (by 0-based henof it in the script registry section) and tBeb@sed)
instruction number within the function. Breakpoiate arranged as a list with last element refengidiJLL:
typedef struct CSLbp_{{

struct CSLbp_t *next;

unsigned char func_id;

unsigned short instr;
} CSLbp_t;

To set breakpoints — the whole list at once —ttadlfunctionSCLangSet Br eakpoi nt s; its prototype is here:
void SClLangSet Br eakpoi nt s(CSLangRun_t *run, const CSLbp_t *breakpoints);

To change the set of breakpoints, &llL.angSet Br eakpoi nt s with another list. To disable breakpoints,
passNULL as the list pointer.

If single step is enabled, breakpoints have naeftetherwiseCSLangExec will return CSL_ BREAKPOINT
each time it successfully reaches the ppigtbefore executing an instruction identified in one of tireakpoints
in the list.

Similar to single-step, to continue script exeautidterCSLangExec returnsCSL_BREAKPOINTcall it again.
Some sort of a loop is a likely arrangement here, t

4.4 Completion Codes

On succesgSLangExec returns one of the followingositive codes#define 'd in cslpubl.h
e« CSL_DONE- Run completed; no errors encountered
e CSL_STEP_COMPLETEBAN instruction completed in single-step mode
e CSL_BREAKPOINT A breakpoint is reached

CSLangExec, CSLangByt ecodeExport, CSLangl ni t ComandCSLangl ni t Exp may detect and return
the followingnegative codes, als&define 'd in cslpubl.h
e CSL_CALLS _TOO_NESTEDB control stack turned out to be of insufficieizies

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 15

e CSL_UNIMPLEMENTED_OPCOBIhe instruction requested is not implementegolir script is
generated correctly, you should never see this code

e CSL_NONWRITEABLE _TARGETan attempt is made to move or store datalintaer al orl npVar

e CSL_WILD_EOLOOPR anEndLoop instruction was encountered without a matcHiogp instruction

e CSL_ILLEGAL_REPEAT- aRepeat prefix was used with an instruction that doesadrhit it

e CSL_BADINSTR- a bad instruction in the script. If your sciigpgenerated correctly, you should never
see this code

e CSL_UNIMPLEMENTED_FUNCTIONaVPI O(input or output) function call was required blogt
NULL function was specified in the SVIRM

e CSL_INDEX_LIMIT — array limit exceeded. The same code is usemfurt, output and temporary
array boundary violation

e CSL_ZERODIVIDE- an attempt to divide by O

e CSL_FUNCTION_INDEX- an invalid destination function index for a pttfunction

e CSL_CSRIPT_TOO_LONG script length doesn't fit 2 bytes

e CSL_BADARG- an invalid argument was passed, such as NULtimgnenvironment

In addition,CSLangExec considers a hon-zero value returned by a functsoanaerror (such as a manifestation
of an 1/O error). IfCSLangExec encounters such a value, it is treated as the eod®;CSLangExec
immediately returns to the caller with the propadagrror code.

Here lies a great opportunity to confuse C-SLamgjremby writing VPIO functions that return codesfiicting
with those reserved by C-SLang. Don't do thatslaiigood practice to have VPIO functions retuggative error
codes less than —512.

5. Examples of C-SLang Scripts

C-SLang distribution comes with a few sample fil@ae purpose of them is to provide a small regoedsst: the
test application linked with them should give tleng results as the reference results file providdde
distribution. Another purpose of the sample file$a demonstrate the use of C-SLang.

Here is a brief description of the sample files.

5.1 (samplel.c) User macros

This file illustrates the fact that you can #defitSLang macros like C macros, and use them agtanston of
the C-SLang instruction set. E.g.,
#define div256 \
Mul Div(Literal,1,2)\
Mul Di v(Literal, 1, 128)
Repeat (Literal ,4) LoadA(l npVar, 0)
div256 [* illustrates a macro */
Repeat (Literal ,4) StoreAExt(QutpVar,0) /[*store divided value*/

This fragment also illustrates a use of Repeat prefix with LoadA andSt or eAEXt instructions.

5.2 (sample2.c) A string problem

This is an example of a string problem for whichssl C-SLang wat optimized: to find the number of
occurrences of the first character in the inpungtrHere is the complete code:

Scri pt Start (Charcount)

RegSt art (
RegFunc(charcount)
RegFunc(charhelper)

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 1€

RegFunc(increment)

)

/*Count the number of occurences of the first
character in the input string

*/
Funct i on (charcount)
G ear X
St oreX(TenpVar, 1) /[*counter*/
Cal | (charhelper) [*a hand-made loop must be a separate function */

Move(TenpVar,1, VPIOQ,0) /[*output the result*/
EndFuncti on
[*lllustrates a function wrapper for a loop*/
Functi on (charhelper)
LoadAl (I npvar,1) /*InpVar[1+X] loaded */
Subtract (Literal,0) /*Check for O character*/

Ret Z [*return if end*/
Subtract (I npvar, Q) /*Compare with char*/
Cal | Z(increment) [*Increment if equal*/
MoveXA [*Increment index X */
Add(Literal,1)

MoveAX

Junp(charhelper) [* repeat */
EndFuncti on
Functi on (increment)
LoadA(TenpVar, 1) /*increment TempVar 1 */
Add(Literal,1)
St or eA(TenpVar , 1)
EndFuncti on
EndScri pt

This simple script illustrates a technique to agea loop (see~unct i on (charhelper)). Since we don't
know the string length in advance, we cannot uskdlop/ EndLoop mechanism. On the other haddnps are
allowed only to functions. So, we have to extraet lbop body into a separate function. Note th#tgfinput
array does not contain a 0 character, the execofitms script would continue until the array bdany is hit, at
which point the execution would terminate with ercodeCSL_INDEX_LIMIT .

The call ofincrement within charhelper also illustrates that a conditional block musatseparate
function.

Finally, this script illustrates that counting \dddition is rather awkward, and a counting insioucts probably
the most likely to be implemented in the next re¢eaf C-SLang.

5.3 (sample3.c) A simplified SAE J1978 message response

This section describes a simplified yet more ingdlexample. The example comes from serial commtionica
message processing area and is related to SAE dil&Jiostic messages over SAE J1850 network witit&-
header format. If this description looks intimiatagj fear it not. We simply assume thatpVar contains a
received messagd rfpVar 0 being its length), and we must process it devial:

If the length less than 4, ignore the message

If the five least significant bits of the filsyte of the message are wrong, ignore it

If byte 2 is not 0x10 or OXFE, ignore the messag

If bit 6 of byte 4 is set, ignore the message

If byte 4 (“mode”) is found among “supported rastiOx12, 0x14, 0x17, 0x19, 0x20 then prepare sitpve
response” in th@ut pVar array and store the “mode” WPl OO0 (to cause the appropriate native
processing); otherwise, prepare a “negative regjanut pVar . Again, byte 0 of th&ut pVar is the
length of the response message.

agbrwdPE

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code

6. For simplicity, our positive response will béytes long; for an input message
Bytel, Byte2, Byte3, Byte4, ...
it will be
Bytel, Byte3, 0x10, (Byte4 | 0x40).
7. Our negative response will be
Bytel, Byte3, Byte2, Ox7F, Byte4, ..., ByteLast, Ox1
i.e., all received message bytes from Byte4 tdakebyte (but no more than Byte9) are copied ¢o th
Qut pVar , followed by error code 0x11.

Here is an implementation:

Script Start (SAE_example)
RegSt art (
RegFunc(SAEMessage)
RegFunc(PositiveResp)
RegFunc(NegativeResp)
/* mode-specific functions are registered
in the order convenient for ComputedCall
*/
RegFunc(Model2)
RegFunc(Model4)
RegFunc(Model7)
RegFunc(Model9)
RegFunc(Mode20)
)
Funct i on(SAEMessage)
Move(Literal ,0, CQutpVar,0) /*resp.length 0 means 'ignore'*/
LoadA(|l npVar,0) /*length*/
Subtract (Literal, 4)
Ret Neg [* if too short a message */
LoadA(| npvar, 1)
/* check header format */
And(Li teral, Ox1F)
Subtract (Literal, 0x0C)
Ret Not Z /*return if wrong format*/
/* check the target address */
ChecklLi st (I npVar, 2, 2, Literal ,0x10 CSLI ST OxFE)
Ret Neg /*return if no match*/
/* check if it is a request */
LoadA(InpVar , 4)
And(Li t er al , 0x40)
Ret Not Z /* return if not a request */
/* check if the mode is supported */
CheckLi st (I npVar, 4,5, Literal,

0x12 CSLI ST
0x14 CSLI ST 0x17 CSLI ST
0x19 CSLI ST 0x20)

JunpNeg(NegativeResp) [* not supported: negative response */
Conput edCal | (Model2) /* mode supported: process it */
Cal | (PositiveResp) [* and prepare positive response */
EndFunction

Funct i on (PositiveResp)
Move(Literal ,4, CQutpVar,0) /*default response length*/
Move(l npVar,1l, QutpVar,1) [* first three bytes are header */
Move(l npVar,3, QutpVar,2)

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 18

Move(Li teral, 0x10, Qut pVar, 3)
LoadA(| npVar , 4)
O (Literal,0x40) /*mode: response to the request*/
St or eA(Qut pVar , 4)
EndFuncti on

Funct i on(NegativeResp)

Cal | (PositiveResp) [* make header */
Move(Literal,O0x7F, CQutpVar,4) [*negative response*/
LoadA(| npVvar,0) [*Length of the input message*/

Add(Literal,2)
M ni mum(Li teral, 11)
St or eA(Qut pVar, 0) [*length of neg. response */
MoveAX
Movel (Literal, Ox11, Qut pVar, 0) /*response code => the last byte */
Subtract (Literal,5) [* - Header length */
Ret NegZ [* return if nothing to copy*/
Repeat A [* Is the number of bytes to copy */
Move(| npVar ,4, CQutpVar,5)
EndFuncti on
[* dummy mode processing functions */
Function(Model2)
Move(Literal, 0x12, VPIO, 0)
EndFunction
Function(Model4)
Move(Literal, 0x14, VPIO, 0)
EndFunction
Function(Model7)
Move(Literal, 0x17, VPIO, 0)
EndFunction
Function(Model19)
Move(Literal, 0x19, VPIO, 0)
EndFunction
Function(Mode20)
Move(Literal, 0x20, VPIO, 0)
EndFunction
EndScri pt

This script illustrates the use of theckLi st instruction inNSAEMessage. It is used one time to check the
message target address match, and the secondtamenhge computed call to a request-specific jgsicg
function.

The end oNegativeResp demonstrates array copying with a single prefixetruction.

6. Instruction Set Reference

6.1 General

A function in C-SLang is a sequence of instructidbDgerands of an instruction depend on the instwidtself.
Generally, they are of the variable spaces destehelier. Some instructions restrict the typesparands.

The instruction set was designed with resultingecdensity as the highest priority. The resultintglaage bears
some resemblance of Motorola 6800 and Intel 80&&wblers as well as FORTRAN. A deeper look migho al
find remnants of COBOL and Java in this eclectig.riihe result is not a truly elegant language bdbes
provide a very good code density.

All instructions fall into one of the four categesi

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 19

e Move
e Arithmetic (and logic)
e Control

* Miscellaneous

These categories are described in detail below.

6.2 Address Spaces and Arithmetic Types of Operands
A numeric operand of a C-SLang instruction mustehatype attribute, which identifies its addresscep The
following attributes are valid:

« Literal —an unsigned byte-wide valugjsigned char

e« | npVar —an element of the array of “input variabldstipvar _t

« Cut pVar — an element of the array of “output variablesjt pvar _t

e TenpVar — an element of the array of “temporary variablegnpvar _t

« VPI O-if a type of a source operand, a value prodbgetie “input function,’r eg_t ; if a type of a

destination operand, a value used by the “outputtfan,” out f unc_arg_t.

It is important to understand how the user-suppijpes affect the results of C-SLang instructions.

For uniformity, and in order to circumvent “undedthbehavior” of C constructs, the value of a soopmrand is
first promoted ta eg_t and then, for all instructiorexcept those including comparison (M ni mum and

CheckLi st), tounsigned long . It means that on a typical binary machine, iftype of source operand is
narrower thamunsigned long , then it is zero-extended if the operand typensigned, and it is sign-extended
if the operand type is signed.

The operation is performed amsigned long operand(s) and the result is demoted to the titeeo
destination operand. On a typical binary machinmeans discarding the higher-order bits that ddinthe size
of the destination operand.

This logic may be simplified or entirely optimizedt by the compiler, but it is necessary to understthe
semantics of it.

With respect to arithmetic operations, this logieams that multiplication and division work on umsg types
and that addition and subtraction would work witined types as expected on machines where negativbers
are represented in 2's complement format (whiahoisadays typical if not universal).

It is recommended thatenpvar _t be at least as wide aspvar _t and out pvar _t, and thareg_t be at
least as wide asnpvar _t, out pvar _t andt enpvar _t.

6.3 Move Class Instructions

As the class hame implies, these instructions nlioviact, copy) data from one location to anotha. quantity
is moved to a wider location, it is extended actwdo its type: Unsigned types are zero-extendwisagned
types are sign-extended. If a quantity is moved ba@rrower location, only the corresponding nunabéts least-
significant bits is actually moved.

Important noteAll Move class instructions can be modifiedRgpeat prefixes. See description BeEpeat for
details.

6.3.1 Move, Movel

General-purpose movétgve) or indexed MoveNbvel)

Syntax:
Move(< sour ce_type>, < source_nunber> < target _type> < target nunber>)

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 2C

The instruction moves parameter numbgosr ce_nunber > of the type<sour ce_t ype> to
parameter numbett ar get _nunber > of the type<t ar get _t ype>.

Movel (< source_type>, < source_nunber>, < target _type> < target nunber>)
The instruction moves parameter numbgosr ce_nunber >+IndexRegister of the type
<sour ce_t ype> to parameter numbet ar get _nunber >+ IndexRegister of the type
<target type>. If<source_type>islLiteral, though, the value is not indexed.

Examples:
Move(Literal,17, QutpVar, 4)
This assigns a value of 17 to the output variable 4
Movel (Literal ,17, QutpVar,4)
Assuming index register X=6, this assigns a vafuerao the output variable 4+6=10.
Move(VPI O, 0, VPIQ 1)
The input function is called with the argumentt@en the output function is called with the value
returned by the input function as the first argumand with 1 as the second argument.
Length:
3 bytes.
Restrictions:
<target type>cannotbéiteral orlnpVar.

6.3.2 LoadA, LoadAl, LoadX, LoadXI

Load pseudo-registers (Accumulator A or index regiX).
Syntax:
Load<Reg>[I](< source_type>, < source_numrber>)
where <Reg> is eitherA or X. The instruction moves parameter numbgosr ce_nunber > (or, if
the | * suffix is supplied, sour ce_nunber >+(content of X)) of the typesour ce_t ype> to the
named register.
No indexing is performed on literals.
IMPORTANT: SeeRepeat description on howoad instructions are affected by it.
Example:
LoadA(Literal,17)
This assigns a value of 17 to the accumulator.

Assuming index register X = 6,

LoadXl (Literal, 17)

assigns a value of 17 to X. UsihgadXl with literals makes code more obscure. UsadX instead.

LoadXl (TenpVar, 17)

This assigns a (possibly, promoted) value of temgovariable 23(=17+6) to the index register.
Length:

2 bytes.
Restrictions:

None.

6.3.3 StoreA, StoreAl, StoreX, StoreXI

Stores accumulator A or index register X.
Syntax:
Store<Reg>[|](< target type> < target nunber>)
where <Reg> is either A or X
The instruction copies the value in the named tegis the parameter numbesour ce_nunber >
(or, if ‘1 " suffix is supplied, sour ce_nunber >+(content ofX)) of the type sour ce_t ype>.
Examples:

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 21

St or eA(Qut pVar, 17)

This assigns a value from accumulator to outputisde 17.

Assuming index register X = 6,

St oreXl (TenpVar, 17)

This assigns the value 6¢¥to temporary variable 23(=17+6).
Length:

2 bytes.
Restrictions:

<target type>cannotbéiteral orlnpVar.

6.3.4 MoveAX, MoveXA

Moves accumulatof to index registeK (MoveAX), or X to A (MoveXA).
Syntax:
MoveAX
MoveXA
Example:
Assuming index register X = 6, accumulator A=1234
MoveAX

This assigns the value 123#)~to X.

Assuming again index register X = 6, accumulatol234
MoveXA
This assigns the value 6¢rto A.
Length:
1 byte.
Restrictions:
None.

6.3.5 StoreAExt

Stores the least-significant by®@HHAR_BIT bits) of the Accumulator in the destination addrasd shifts the
Accumulator a byte to the right. TIRBHAR_BIT most-significant bits of the Accumulator are fillaith zeros
regardless of whether theg_t type is signed or not.

Syntax:
St or eAEXt <t arget _type>, < target nunber>)

Examples:
St or eA(Qut pVar, 17)
Assuming A=0xFEDCBA55 an@HAR_BIT=8, the instruction writes 0x55 in the output varahl’
and OxOOFEDCBA to the Accumulator.
Length:
2 bytes.
Restrictions:
<target type>cannotbéiteral orlnpVar.

6.4 Arithmetic and Logic Class Instructions

All arithmetic and logic instructions perform anepgtion on the accumulator A and an operand amd #te
result back in the accumulator. The opcodes cap bptional ending A or X; in this case, the operantthe
Accumulator itself or the Index Register, respedtiv

The following instructions are supported:

* Add - addition
¢ Subtract — subtraction

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 22

e O - bitwise logical OR

e And - bitwise logical AND

e XO - bitwise logical exclusive OR

¢ M ni mum-— minimum

« Ml Di v — multiplication and division

6.4.1 Instructions with Opcodes without endings

These instructions perform a binary operation @abcumulatoA.
Syntax (generic):
Opcode(< source_type>, < source_nunber >)
The instruction performs th@pcode operation on the accumulator register and parametaber
<sour ce_nunber > of the type sour ce_t ype> and stores the result in the accumulator register
Example:
Add(Literal,17)
This adds 17 to the accumulator.
Length:
2 bytes.
Restrictions:
None.

6.4.2 Instructions with Opcodes with endings

These instructions perform a binary operation @abcumulatoA.

Syntax (generic; ending E stands foor A):
Opcode<E>
The instruction perform®pcode operation on the accumulator register and (depgnaln the ending
beingA or X) the accumulator or the index register and sttiresesult in the accumulator register.

Example:
AddA

This doubles the accumulator.
Subtract X
This subtracts the index register from the accutoula
Length:
1 byte.
Restrictions:
Redundant or useless opcodes, ¥karA are not defined or implemented.

6.5 Control Class Instructions

Instructions in this class change the flow contfdhe script execution. The following instructicsr®e supported:
« Call

* Ret

e Jump

The first three instructions change flow controlhin the same script. The last one calls (by nujnddunction
listed in native function table.

Each of the four instructions can have an endingimgathem execute conditionally depending on thgnsd)
value of accumulator register A. The endings are:

e Z— execute iA==0; otherwise skip to the next instruction

« NotZ — execute iAl=0 ; otherwise skip to the next instruction

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 23

e Pos — execute iA>0; otherwise skip to the next instruction
e PosZ - execute ifA>=0; otherwise skip to the next instruction
* Neg - execute iA<0; otherwise skip to the next instruction
« NegZ, — execute iA<=0; otherwise skip to the next instruction

Note Ret must have an ending.
Note If the user-supplied register typegg t, is an unsigned typ#&eg is useless andosZ is unconditional.

6.5.1 Call

Syntax:
Cal I [Endi ng](< Functi on_nane>)
This instruction passes the control to the functiBanct i on_nane>. After the called function
returns, control is passed to the instruction fellg theCal | .
Example:
Cal | Not Z(Police)
This executes the functidPolice in the same script, but only if accumulator is 1zano.
Length:
2 bytes
Restrictions:
Called function must be registered in the currenps.

6.5.2 Ret

Syntax:
Ret <Endi ng>
This instruction returns control to the caller ftiog (or exits the script execution if the functisntop-
level), but only if the condition specified Endi ng is true. Note that for this instructioBndi ng is

mandatory.
Example:

Ret Not Neg

This returns from the current function to the agallethe same script, but only if accumulator isozer

positive.
Length:

1 byte.
Restrictions:

None.
6.5.3 Jump
Syntax:

Junp[Endi ng](< Functi on_nane>)
This instruction passes the control to the functiBanct i on_nane >. When the jumped-to function
returns, control is passed as if current functietumed.
Example:
JunpNot Z(Fence)
This gives up control to the functidrence in the same script, but only if accumulator is 1zano.
Length:
2 bytes
Restrictions:
Jumped-to function must be registered in the ctirsenipt.

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 24

6.6 Miscellaneous Class Instructions
Instructions in this class are of odd (importahgugh) variety and are described individually below

6.6.1 Loop

Syntax:
Loop
This instruction begins a loop, which ends withrespondingendLoop (see below).
Example:
Loop
Length:
1 byte
Restrictions:
None.

6.6.2 EndLoop

Syntax:
EndLoop
This instruction ends a loop, which begins withrespondind-oop instruction. It checks if the index
register X is greater than 0, and if so, passes@aio the instruction immediately following the
correspondind.oop instruction. It follows from this description thatloop body (i.e., everything
betweerLoop andEndLoop) is executed at least once (like FOR in FORTRAN@mwhile in C), even
if X was negative in the beginning.
Note Loop/ EndLoop construct uses a fixed loop counter, so nestgus|ashile technically possible,
have limited use and require clever manipulatiothefindex register. Also, calling a function from
within a loop, while legal, is a risky businessgdngse a called function can inadvertently modiéyltdop
counter.
Note For non-negative X, the loop runs (X)+1 timesofpded X is not modified within loop).

Example:

LoadX(Literal, 10)

Loop

Movel (Literal ,0, TenpVar, 3)

EndLoop

This clears 10+1 temporary variables 13, 12, 95,.4, 3.
Length:

1 byte
Restrictions:

None.

6.6.3 Repeat, RepeatA, RepeatX
Syntax:

Repeat (type, nun

Repeat <Reg>

where< Reg> is eitherA or X.

These are not real instructions but rather thexymeimodifying the next instruction (of Move Class
Arithmetic and Logic Class only). First, the nexstruction is executed the number of times spetifie
the operand (variable numbaum of typet ype for Repeat , content of Accumulator fdRepeat A,
content of index register f®epeat X); the operand itself remains unchanged (unlessgdthby the
instruction itself). Prefixed instruction executddeast once, even if repeat counter is less @han
Second, the address of the operand of the nextigtgin (if it is not ofLi t er al type) is modified by
adding the current repeat count (zero-based).

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 25

UsingRepeat prefix with Load instructions seemingly makes no sense. To takarddge of the
opportunity to fill the void, th&epeat prefix modifies the behavior &foad instructions in the
following way:

If a Load instruction is executed not for the first timeehthe previous content of the Accumulator is
shifted left by a byte (i.eCHAR_BIT bits), and the least significant byte is fillediwthe least
significant byte of the operand.

Examples:
C earA
Repeat (Literal,10) Add(InpVar, 1)
This calculates the sum of ten input variables, 1,.210.

Repeat (I npvar, 10) Move(Literal, Ox55, CQut pVar, 1)
This fills a few (namely, whatever number is inuhpariable 10) output variables, starting withpauit
variable 1, with the hex pattern 55.

Cl earA
Repeat X XOr (I npVvar, 1)
This calculates the exclusive OR of input variadleg, ..., total of the value of index register.

Repeat (Literal ,4) LoadX(Literal, 0x55)
Assuming X has 32 bits and CHAR_BIT=8, this load5%555555 to X.

Repeat (Literal,3) LoadA(InpVar, 0)
Assuming that A has 32 bits, thatpvar _t issigned char and that input array contains OxAA,
O0xAB, OXAC, this makes A = OXFFAAABAC where FF casrfeom sign-extending the first byte, OxAA.

Length:
2 bytes Repeat), or 1 byte Repeat A, Repeat X).
Restrictions:
Allowed only for Move Class or Arithmetic and Logiass instructions.

6.6.4 CheckList

Syntax:
CheckList(type, num n, List _type, Arg List)
where is &CSLI ST-separated list of numbers:
Arg_List ::= num | Arg_List CSLI ST num.

This instruction checks whether the value of vdaalumof typet ype is found among the members of
Arg_Li st of a specified (hamely,i st _t ype) type. If it finds the match, it puts its 0-basedinal
number in the accumulator; otherwise, it puts alf+hore than one match is found, the one with the
least number is used.

n is the number of elementsMn g_Li st and is considered a byte-wide literal.st _t ype is the
common type of elemenfs g Li st .

Warning The number of list argument must be exantlyrhe scriptcannot be executed correctly if it is
not so.

Example:
CheckLi st (| npVvar, 0, 4, InpVar,3 CLIST4 CLIST12 CLIST45)

This checks whether input variable 0 is equal te oithe four input variables 3, 4, 12, or 45. For
instance, it npVar 0is Ox11, and npVar 3, 4, 12 and 45 are equal to 0x0f, 0x11, Ox1010=xlvalue
1 (first match number) is assigned to the Accunmulat

Length:
4 + length-of-the-list bytes

Restrictions:

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 26

None.

6.6.5 ComputedCall and ComputedJump

Syntax:
Conput edCal | (<functi on_nane>)
Conput edJunp (< function_nane>)
These instructions do nothing if accumulator Aégative. If it is non-negative, ti@nput edCal |
instruction calls, and th€onput edJunp instruction jumps to the function, which is regist at the
offset A (0-based) from the functiorf inct i on_nane>, supplied as the argument. Both instructions
can work in concert wititheckLi st instruction:CheckLi st would calculate the offset that
Conput edJunp would use.

Example:

RegSt art (
Regi.liunc(MyFunc)
RegFunc(YourFunc)
RegFunc (HisFunc)
RegFunc(HerFunc)

)

LoadA(Literal , 2)
Conput edCal | (MyFunc)

In this exampleConput edCal | will call HisFunc , which is at offset 2 from the argument function
MyFunc.
Length:
2 bytes
Restrictions:
None.

6.6.6 ClearA

Syntax:
ClearA
This instruction clears the accumulator register.
Example:
Cl earA
Length:
1 byte.
Restrictions:
None.

6.6.7 ClearX

Syntax:
ClearX
This instruction clears the index register.
Example:
G ear X
Length:
1 byte.
Restrictions:
None.

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 27

6.6.8 Compl and Comp2
Syntax:

Compl

Comp2

This instruction computes 1's complement or 2's ptament respectively of the accumulator register.
Example:

Compl
Length:

1 byte.
Restrictions:

None.

6.6.9 ExchangeAX
Syntax:
ExchangeAX
This instruction exchanges value of accumulatoriaddx register.
Example:
ExchangeAX
Length:
1 byte.
Restrictions:
None.

6.6.10 MulDiv
Syntax:
Mul Di v(type, mnum d_numn
This instruction treats all arguments multiplies thccumulator by the parametem#numof type
t ype. The product is then divided by the parametdr #umof the same typeype, and the quotient is
cast back to eg_t and assigned to the Accumulator. Any overflowgisared. Division by zero causes
runtime errolCSL_ZERODIVIDE
Example:
Mul Div(Literal ,5 Literal,?2)
This multiplies the Accumulator by 2.5.
Length:
3 bytes.
Restrictions:
None.

7. Frequently Asked Questions

7.1 My embedded application does not use C runtime library. Can | still use C-
SLang?

Yes. C-SLang doesn’t use any runtime library fumtsi exactly because it can target small embedded

applications. Nor does it use any standard maerxaspt CHAR_BIT, which is#define 'd in the standard

headedimits.h . If your compiler does not have or does not usehbader, you mugtdefine CHAR_BIT

according to your system'’s architecture. BliLL is#define ’'d in case you do not include standard header(s).

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

C-SLang: Portable script language embedded in C code 28

7.2 How many different scripts can run simultaneously?

In principle, you can run any number of C-SLangmsron any number of C-SLang virtual machinestehg no
limitation on C-SLang side.

7.3 My operating environment allows pre-emptive and cooperative tasks. How
do I schedule runs of C-SLang scripts?

It's a truism to say that the answer depends on gpplication. In general, you should use pre-evepti
scheduling only if cooperative scheduling is fomgoreason not sufficient.

C-SLang engine doesn’t make use of its own menamrg,as such is fully reentrant and safe to usedremptive
multitasking.

Whatever the kind of multitasking you choose, msike that two conditions are met:
« Memory passed to C-SLang to create runtime enviaemirhas no conflicts with multitasking, and
¢ VPIO input and output functions are safe for maftking

Incidentally, callingCSLangExec from an interrupt service routine is generally aatery good idea, because
interpreting a script can take a while. You mayayat, though, if the script is known to be smatid you have a
fairly mighty processor. In this case, treat it Hane way as pre-emptive scheduling.

Threads should be treated like pre-emptive tasks.

If CSLangExec takes too much time in cooperative multitaskingimmment, you may employ debug interface
to run the script piecemeal.

7.4 Do | need separate control stacks for different scripts?
No, as long as your scripts cannot run simultangoW¥gs, if the scripts can run at the same time.

7.5 How do | debug a C-SLang script?
Use C-SLang debug interface.

It is a good idea to debug a C-SLang script usingca integrated development environment, like tifatisual
C/C++. For instance, you can exec8td_angSet Si ngl eSt ep andSCLangSet Br eakpoi nt s by typing
the call statement in the watch window right duritedpug session. If you plan to use the script poeed format,
you can export it right from your debugging sessising linked-inCSLangByt ecodeExport function.

© 1999-2003 MacroExpressiohsp://www.macroexpressions.com

