
C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

��������

Portable script language embedded in C code

Enhancing embedded systems testability

Version 2.0

MacroExpressions
http://www.macroexpressions.com

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

1

Table of Contents

0. C-SLANG: WHAT’S NEW IN 2.0? ..3

1. C-SLANG: EXECUTIVE SUMMARY...3

1.1 WHAT IS IT FOR? ...3
1.1.1 Off-board diagnostics ...3
1.1.2 On-board diagnostics ...4
1.1.3 Manufacturing support ...4
1.1.4 Quality assurance...4

1.2 WHAT DOES C-SLANG CONSIST OF? ..4
1.3 WHAT MAKES C-SLANG DIFFERENT?...4

2. ANALYSIS AND MOTIVATION...5

2.1 SOME EXAMPLES ..5
2.1.1 Event-driven software ...5
2.1.2 Downloadable code ..5

2.2 PROBLEM ANALYSIS ...5
2.2.1 Code generation issues ...5
2.2.2 Data access ..6

2.3 C-SLANG DESIGN GOALS..6

3. THE C-SLANG SOLUTION...6

3.1 HOST LANGUAGE..6
3.2 C-SLANG DATA TYPES AND ADDRESS SPACES..6
3.3 INSTRUCTION SET OUTLINE ...8
3.4 C-SLANG VIRTUAL MACHINE ...8
3.5 C-SLANG SYNTAX ..9

3.5.1 Script..9
3.5.2 Functions ...9
3.5.3 Function Registration ...9
3.5.4 Comments and Whitespaces ..9
3.5.5 Symbolic Names and Other Macros...9

4. USING C-SLANG..10

4.1 C-SLANG SCRIPT REPRESENTATIONS...10
4.1.1 Source, Bytecode and Bytecode Size in Compiled Format ..10
4.1.2 Exporting a C-SLang Script Bytecode to Portable Format ...10

4.2 RUNNING C-SLANG ON A VIRTUAL MACHINE ..12
4.2.1 Initializing a SVIRM ...12

4.2.1.1 SVIRM-related data types ... 12
4.2.1.2 SVIRM initialization functions .. 13

4.2.2 Running C-SLang scripts ..13
4.3 DEBUG INTERFACE..14

4.3.1 Single-Step Execution ...14
4.3.2 Breakpoints ..14

4.4 COMPLETION CODES...14

5. EXAMPLES OF C-SLANG SCRIPTS..15

5.1 (SAMPLE1.C) USER MACROS..15
5.2 (SAMPLE2.C) A STRING PROBLEM..15
5.3 (SAMPLE3.C) A SIMPLIFIED SAE J1978 MESSAGE RESPONSE...16

6. INSTRUCTION SET REFERENCE...18

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

2

6.1 GENERAL ...18
6.2 ADDRESS SPACES AND ARITHMETIC TYPES OF OPERANDS..19
6.3 MOVE CLASS INSTRUCTIONS...19

6.3.1 Move, MoveI...19
6.3.2 LoadA, LoadAI, LoadX, LoadXI..20
6.3.3 StoreA, StoreAI, StoreX, StoreXI ...20
6.3.4 MoveAX, MoveXA...21
6.3.5 StoreAExt ...21

6.4 ARITHMETIC AND LOGIC CLASS INSTRUCTIONS..21
6.4.1 Instructions with Opcodes without endings..22
6.4.2 Instructions with Opcodes with endings...22

6.5 CONTROL CLASS INSTRUCTIONS..22
6.5.1 Call ..23
6.5.2 Ret..23
6.5.3 Jump ..23

6.6 MISCELLANEOUS CLASS INSTRUCTIONS...24
6.6.1 Loop...24
6.6.2 EndLoop...24
6.6.3 Repeat, RepeatA, RepeatX...24
6.6.4 CheckList ...25
6.6.5 ComputedCall and ComputedJump ...26
6.6.6 ClearA..26
6.6.7 ClearX..26
6.6.8 Comp1 and Comp2 ...27
6.6.9 ExchangeAX ...27
6.6.10 MulDiv ...27

7. FREQUENTLY ASKED QUESTIONS ..27

7.1 MY EMBEDDED APPLICATION DOES NOT USE C RUNTIME LIBRARY. CAN I STILL USE C-SLANG?.............27
7.2 HOW MANY DIFFERENT SCRIPTS CAN RUN SIMULTANEOUSLY? ..28
7.3 MY OPERATING ENVIRONMENT ALLOWS PRE-EMPTIVE AND COOPERATIVE TASKS. HOW DO I SCHEDULE

RUNS OF C-SLANG SCRIPTS?...28
7.4 DO I NEED SEPARATE CONTROL STACKS FOR DIFFERENT SCRIPTS?...28
7.5 HOW DO I DEBUG A C-SLANG SCRIPT?...28

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

3

0. C-SLang: What’s new in 2.0?
(Those unfamiliar with C-SLang can safely skip this section.)

Version 2.0 is a major rewrite. Here is the list of changes:

1. C-SLang script representation is now independent of luck with the compiler; it is conforming to C
standard.

2. Accordingly, the syntax of a script header has slightly changed.
3. Repeat LoadA and Repeat LoadX operations now do useful things.
4. StoreAExt operation added.
5. CallNative operations are no longer supported since their functionality is covered by virtual physical

input/output operations.
6. Integral C types of input, temporary and output variables, as well as of registers, are now supplied by the

user to better match the platform. A template header is provided.
7. C-SLang virtual machine no longer owns the run control structure; it is passed as an argument. Thus, the

virtual machine is reentrant and, in particular, thread-safe.
8. Virtual machine now performs runtime array boundaries check.
9. Debug interface is added via single step and breakpoint facilities.
10. Script always executes starting from the first registered function.

1. C-SLang: Executive Summary

1.1 What is it for?

C-SLang is a simple script language optimized for code density, together with its runtime environment.

The design of C-SLang is geared primarily toward the specific needs of small-size embedded systems:

• Off-board diagnostics
• On-board diagnostics
• Manufacturing support
• Quality assurance

Moreover, the small size of C-SLang scripts and very small memory footprint of the runtime environment make it
suitable for writing any component where memory is at premium and execution time is available. (See some
examples below.)

1.1.1 Off-board diagnostics
Once a device is released, the test procedure may still change. Example: automotive exhaust test sequence. A
common solution is to download the test code from the test tool to the device under test and have the device
execute the downloaded code.

C-SLang enables to have machine-independent code format, which is fast to download.
The test code does not change when the CPU of the device changes; this is beneficial for both the vendor of the
device and for the OEM (original equipment manufacturer) or system integrator, which may be a different entity.
With some standardization effort on the OEM side, the test code may even be the same for different vendors’
devices.
This allows to have a stable asset library of tests, maybe different between the vendor and the OEM. Result:
saving time and costs of test development and maintenance.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

4

1.1.2 On-board diagnostics
Certain self-tests, whether power-on or continuous, are built in the device. Usually they do not require blazing
speed of execution.

C-SLang allows to write those tests in a very compact and machine-independent format.
Those tests can form a test asset library.

1.1.3 Manufacturing support
There are tests that need to be run only once during the device manufacture.
For instance, when the ECU (electronic control unit) is first assembled, it is reasonable to test it for missing,
crossed or shorted connections, and for basic functionality of the on- and off-chip peripherals. When an ECU is
attached to the actuators (be it an antenna or a pneumatic unit), a functional test of the final assembly is in order.

C-SLang enables not to have these tests built in, but to download and execute them as needed. This reduces the
code memory footprint and increases the flexibility in updating the test sets. Moreover, the functional tests, being
in machine-independent format, may be independent of the particular implementation of the ECU. They may form
an asset library.

1.1.4 Quality assurance
When the device fails, the problem at hand is to find the root cause of the failure and trace it to a hardware
component failure, a hardware design error, software bug or manufacturing process problem. This requires
explorative testing; it is not known in advance, what test pattern would identify the problem spot.

C-SLang allows to download and execute test routines that were not envisioned in advance. Moreover, the new
tests, being machine-independent format, can contribute to a cumulative asset library of explorative tests.

1.2 What does C-SLang consist of?
C-SLang scripts can be used as compiled-in or as portable code. “Compiled-in” means that the script, being just a
strangely looking C source code, is compiled and linked with the rest of the application. “Portable” means that the
script can take a form of byte sequence, which can be executed in an application other than the one used to create
it.
Thus, C-SLang comprises the following components:

• C-SLang language – a simple and compact script language
• C-SLang runtime environment, along with C-SLang API (application programmer’s interface) to

initialize and run a C-SLang script
• Optional C-SLang debug API to debug C-SLang scripts (and, strictly speaking, it is a part of the runtime

environment
• Optional C-SLang bytecode export facility with its own simple API.

1.3 What makes C-SLang different?
C-SLang source code is compiled into interpretable format by C compiler. Therefore, by linking script source with
the interpreter, you get the compiled script automatically embedded in your application. This allows, for instance,
to fully debug a C-SLang code in any luxurious integrated development environment, even if the target is a
naughty microcontroller. By linking script source with the exporter, you can convert the automatically compiled
script into completely portable and relocatable format.

This is what makes C-SLang unique:

1. No additional tools needed. C-SLang source code is compiled into bytecode by a standard C compiler.
Therefore, C-SLang source is simply unusually looking C source. In fact, the output of the C
preprocessor is a bunch of const data objects.

2. The main design goal was to achieve good code density. Thus, C-SLang looks rather like assembler
language of a single-address machine, extended with single-instruction search, calculated call and goto

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

5

and some other advanced instructions. The design was inspired by architectures and instruction sets of
6800, 8086 and 8080 microprocessors, FORTRAN and Java.

3. 4-dimensional address space of the virtual machine is optimized for small components. It consists of
distinct arrays of what is considered script’s inputs, outputs, temporary variables, as well as (virtual)
physical inputs and outputs.

2. Analysis and Motivation
In both embedded and desktop applications, there are many instances where we don't need any processing speed,
but rather we want to spend as little memory as possible. Here are some generic examples.

2.1 Some Examples

2.1.1 Event-driven software
A common feature of such applications (or, rather, components) is that they comprise a system of reactions to one
or few events out of many. These include human interface, some slow communications protocols, off-line
diagnostic procedures etc. So, the scenario at hand is such that we have a large number of events to handle;
accordingly, it requires a pretty respectable code size. At the same time, just a few events must be handled at once,
so processing time is not an issue.

2.1.2 Downloadable code
In embedded applications, downloadable code is somehow loaded in the RAM of the embedded microcontroller
and executed from there. Such programs can be used in software and/or hardware troubleshooting, manufacturing
and quality control of the device in question. In addition, downloadable code can be shipped from one
microcontroller to another, as is in case of a configurable N: one standby device.

In both classes of applications, execution speed is not critical, whereas saving precious RAM and ROM in
embedded systems is of real importance.

2.2 Problem Analysis
A situation when “speed for size” deal is required is well known in computing community. A natural solution is to
replace straight machine code with a common built-in mechanism of interpreting a (more or less) simple scripting
or interpreted language. Such a scripting language should be designed to be fairly compact and easy to write in. A
good example is Tcl/Tk for windowing systems programming.

This need seems to be well met, with interpreted languages from BASIC and Forth to Perl and Java. So, what’s
the need in yet another language? Well, from embedded systems prospective, there are several problems with
existing languages. They are discussed below:

2.2.1 Code generation issues
Typically, interpreted code must be stored in some intermediate format, or bytecode. This is required to both save
the size of representation and improve performance. (It is not true for JavaScript, for instance, – but look at the
size of “interpreters”!)

To generate bytecode, we need a separate utility, whether we want to call it compiler or not. This immediately
creates at least three problems:
First, it complicates project management, since this utility must be subject to archiving and version control along
with the standard software toolchain.
Second, our script in source format cannot be stored in our project’s normal source file; this creates problems with
linking a project, especially for ROM-based systems.
Third, and for the same reason, it is extremely hard to statically embed the scripts in our application. The latter is
not true, for instance, for p-code, but then p-code is bound to the application in which it is stored and cannot be
exported at runtime. That’s either one way or another.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

6

2.2.2 Data access
As long as a script is written in a self-contained language, it is not a straightforward task to arrange data interface
between our “normal” application and a script we want to use. Usually, a well-defined interface protocol is
required, and maintaining it comes at a premium (at least of extra code size).

2.3 C-SLang Design Goals
Our design goals are to address the above-mentioned problems, in the first place. This means the following:

Translation from human-readable script to interpreter-readable bytecode must be done at compile time by means
of a standard compiler. This eliminates the need in an extra tool and automatically makes the script ROMable (if
needed). Anyway, if we need a script, it can be linked together with application!

To cater to the needs of downloadable code, we want to have a bytecode export capability. The logic of compiled-
in script leads to a linked-in export module. Exported format should be relocatable (independent of load address)
and portable (platform-independent). As an added bonus, we would be able debug scripts in any development
environment we like and then export them in source code or bytecode form to the real target.
A subtle additional benefit of such an approach: there are odd microcontrollers out there, which do not execute
code from certain areas of RAM. Since C-SLang bytecode is actually data, this behavior does not pose any
problem.

Then, the script interpreter is split in two pieces: (a) a pretty hollow virtual machine without its own data areas and
(b) a mechanism to tune it to actual data dynamically, just before running a script. One can see here an analogy
with the interactions between formal and actual parameters of a subroutine. This approach solves data interface
problems.

Additionally, the set of language operators and addressing modes should be chosen to reach a good compromise
between complexity of the interpreter (= code size), the speed of interpretation and the size of bytecode. For best
code density, the design is two-tier: common operations are optimized for code density, and actions that are more
complex can be expressed reasonably well (not to over-inflate the interpreter).

3. The C-SLang Solution
To meet the design objectives stated earlier, C-based Script Language, or, for short, C-SLang, has been created. It
is described below.

3.1 Host Language
C-SLang is implemented in portable C. One reason is that C is so popular. In fact, for some microcontrollers it
may be the only high-level language available. In addition, this choice allows off-line debugging of the
functionality of a given script, say, on a PC, using, for example, Microsoft VC/C++ for implementation.

3.2 C-SLang Data Types and Address Spaces
To achieve best code density, C-SLang Virtual Machine pretty closely emulates single-address machine. It can be
thought of as a small processor with a pretty odd architecture.

C-SLang has two virtual registers: the Accumulator A and the Index Register X, and three (!) small-size address
spaces for:

• Input variables
• Output variables
• Temporary variables

Address spaces deserve some discussion. A typical microprocessor has one or two address spaces, depending on
whether I/Os are memory-mapped or have their separate space. In small tasks for which C-SLang is designed, it is
usually possible to identify three kinds of memory-addressable entities – inputs, outputs and temporary storage. In

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

7

C-SLang, they are considered to be separate arrays, or address spaces. Inputs are considered read-only! It is the
responsibility of the code external to C-SLang to fill in the inputs. For example, in communications application,
message processing can be implemented in C-SLang. In this case, input would contain a received message, and
output, - response message.

The types of registers and variables are integral C data types; they must be typedef ’ed in the mandatory user-
supplied header file “csl_opt.h ”:

• reg_t for the registers
• inpvar_t for the input variables
• tempvar_t for the temporary variables and
• outpvar_t for the output variables

A sample “csl_opt.h ” file that comes with the C-SLang distribution has the following definitions:

typedef long reg_t;
typedef unsigned char inpvar_t;
typedef unsigned short tempvar_t;
typedef unsigned char outpvar_t;

These definitions may or may not meet your needs, and they may be changed as appropriate.
Note that if you choose an unsigned type for reg_t, the Accumulator will never be negative, so the
corresponding conditional operations will never be executed.

Literals are always considered of type unsigned char . If you need wider numbers, you’ll have to make them
in the registers or variables.

While we are at it, C-SLang makes no assumption on the number of bits in a char ; it relies on the constant
CHAR_BIT #define ’d in <limits.h >. Usually, it is 8 for a microcontroller and 16 for a DSP. In an unlikely
case your compiler comes without <limits.h >, you can #define CHAR_BIT yourself according to your
platform. Whenever a ‘byte’ is mentioned, the type unsigned char is meant.

Input, output and temporary variables are arranged in respective contiguous arrays. The maximum size of these
arrays must fit a byte (e.g., 255 max if CHAR_BIT is 8). Indices beyond that limit could only be accessed with
indexed Move instructions and, for simplicity, are not presently supported. This is not a principle limitation and
can be removed if such a need is identified.

To access a variable (or a literal), you specify, roughly speaking, the type and the index, separated by comma.
E.g.,
Literal,5 has the type unsigned char and the value 5.
InpVar,6 has the type inpvar_t and the value of whatever is stored in the element 6 of the array of input
variables.

C-SLang also uses a much more “virtual” address space called virtual physical input/output (VPIO). The
immediate motivation for this “type” is providing an interface to the physical inputs and outputs of the native
hardware. The idea is that the application provides two functions with the following prototypes:

• short int inp_func(unsigned ionum, reg_t *value);
• short int outp_func(unsigned ionum, outfunc_arg_t value);

where outfunc_arg_t type is typedef ’ed in “csl_opt.h ” by the user (and is reg_t in the
default definition).

The first function reads and the “input port” by the port number and returns the value read; the second one writes a
value to the “output port” by the port number. Either function returns a user-defined error code, 0 being OK.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

8

Whatever the initial motivation though, notice that input and output functions can do pretty much anything they
are written to do. So, this pair of functions constitutes the only interface to the target machine.

3.3 Instruction Set Outline
Complete reference of C-SLang instruction set is given in a separate section. Here we only take a glimpse at the
“big picture”.

C-SLang supports loading and storing data to and from registers, addition, subtraction and logical operations. It
also supports copying data from one location to another bypassing the registers.

Removed from the standard set are comparisons, for their sole purpose is the following jump. Instead, C-SLang
provides jumps, calls and returns conditional on the value in the Accumulator.

Jumps are considered as serious as calls. C-SLang provides (conditional and unconditional) calls and jumps to
functions, i.e., contiguous named fragments of code. There are no jumps within a function. This makes it harder
(but not impossible) to write spaghetti code.

In order to improve code density, C-SLang implements more advanced instructions, such as:

• Minimum – computes the lesser of the Accumulator and the operand
• MulDiv – multiplies and divides the Accumulator
• Loop and EndLoop – to arrange simple loops
• CheckList – provides a search for a match to the Accumulator value

Some instructions support a Repeat prefix, which modifies the behavior of the instruction; typically, by
repeating its execution.

The only true code address arithmetic is rudimentary, yet it looks sufficient. It is computed call (or jump) where
control is passed to one of several functions based on the content of the Accumulator. These instructions are
reminiscent of “arithmetic IF” in FORTRAN and rely on special order of function registry in the script (see the
reference below).

A variable of any data type (except literals) is considered to be an array element. In instructions supporting repeat
prefix (see below) and/or indexing, repeat counter and/or index register X are considered additional offsets to the
array. For instance, if the operand in an index-supporting instruction is TempVar,5 and X=3, the operation will
actually be performed on TempVar,8 (=5+3). This provides sufficient (FORTRAN-equivalent) power of data
address arithmetic.

3.4 C-SLang Virtual Machine
C-SLang virtual machine (SVIRM) is a mapping of C-SLang syntactic elements to the actual data structures. It
“fleshes out” the actual arrays of input, output and temporary variables, as well as the native hardware interface
(VPIO functions).

A SVIRM may be configured on the fly or statically; in any case, its definition has no reference to a C-SLang
script to run. This provides maximum flexibility.

To run a script, a SVIRM runtime environment must be first initialized. It means that a data structure must be
filled out to link together the C-SLang script, the SVIRM to run it on, the control stack to keep track of the script
flow control, as well as storage for C-SLang registers and misc. data.

These concepts are discussed in detail in a section below.

It’s worth making two notes here.
First, if the script was run on a runtime environment, the latter needs to be initialized again to be able to run a
script, whether the same or a different one.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

9

Second, when a C-SLang script uses VPIO operands, it obviously assumes certain functionality provided by the
input and the output functions. However, these functions are supplied via a SVIRM, and so, they are separated
from the script. Unless the VPIO functions are universal for the device, a mismatch is possible, and it is the
programmer’s responsibility to link the script with the right SVIRM. But this is also an added flexibility: by
switching, e.g., the input function, you can disconnect the script from the real physical inputs of the device and,
say, play back a pre-recorded sequence of inputs. This may be very helpful in tasks like failure analysis.

3.5 C-SLang Syntax
A C-SLang is a C source code; as such, it is free-input and blank characters are ignored. It is handy, however, to
treat it most of the time as line-based: each operator takes its own line, just as a normal Assembly language. An
operator can start at any position on the line.

3.5.1 Script
C-SLang script starts with the statement
 ScriptStart(< script_name>)
and ends with the statement
 EndScript.
There can be only one script per source file. It is possible, however, to have multiple script files.

3.5.2 Functions
The next hierarchy level is Function. Syntax:
 Function (<name>)
The script for a function continues until the statement EndFunction is encountered. Example:

Function(first)
… <Operators> …
EndFunction

Here, the function first lasts until the EndFunction statement.
Functions do not have arguments: They all operate on common data space.

3.5.3 Function Registration
A function can only be executed if it is registered in the script. Each script starts with registration section.
Syntax:
RegStart(
 RegFunc(< function_name>)

 RegFunc(< function_name>)
)

RegStart must immediately follow StartScript statement.

3.5.4 Comments and Whitespaces
Since C-SLang source code is in fact a C file, C-SLang allows normal C-style comments, /* multiline */
and //single-line , if the latter is supported by the C compiler.

Extra whitespaces (spaces and tabs) can be sprinkled around as desired.

3.5.5 Symbolic Names and Other Macros
Symbolic names may be #define ’d for use instead of numbers as needed. They cannot be the same as C-SLang
keywords and opcodes, of course.

Actually, C-SLang accepts C macros #define ’ing new constructs, including function-like macros. This
automatically gives some macro capabilities to C-SLang.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

10

4. Using C-SLang

4.1 C-SLang Script Representations

4.1.1 Source, Bytecode and Bytecode Size in Compiled Format
A C-SLang script first appears in a C source file as an oddly looking fragment of code. It is automatically
converted into const data, and this is what is called “compiled format.” Notice that script in compiled format
ends up in ROM if the application is ROMable. After compiling a C-SLang script, the result is a bunch of
initialized constants in constants’ area (be it section, segment or group, depending on the platform).

Note that to compile a script, the header files csldef.h and cslpubl.h must be #include ’d.

The size of the script can be calculated as follows:

 3* sizeof (char const *) per script
+ sizeof (char const *) * number-of-registered-functions
+ the sum of lengths of all functions

The length of a function is the sum of lengths of all its instructions plus 1, rounded up to the next alignment
boundary for char const array.

Example: consider a trivial script

ScriptStart(GoofyExample)
RegStart(

RegFunc(DoNothing)
)
Function(DoNothing)
EndFunction
EndScript

Assuming all pointers are four bytes long, this script takes 3*4 per script + 4*1 for registered functions + 1 byte
for an empty function, totaling 17 bytes.

Note1: If your compiler pads const character arrays to an alignment boundary, the length of a function, for the
purpose of this calculation, should be rounded up to the nearest boundary. The example above would then give 20
bytes.

Note 2: Some compilers treat a C construct used in C-SLang script as suspicious; they issue a warning. Some
compilers may even generate an error. In either case, you can work around this by inserting a line
 #define CSL_CONST
before including C-SLang headers. The price for that is an intermediate pointer of the script becomes non-const,
so a script would carry a pointer-size RAM overhead.

4.1.2 Exporting a C-SLang Script Bytecode to Portable Format
A C-SLang script in compiled format is automatically generated and is ROMable all right, but it is neither
portable nor relocatable. This is not because of C-SLang language itself but because of limitations of C pre-
processor. To convert compiled format into portable format, use the function CSLangBytecodeExport . Here
are the prototypes:

typedef void ByteDump_t(int c, void *arg);
extern int CSLangBytecodeExport(CSLscript_t script, ByteDump_t *emitFunc,
 void *arg);

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

11

CSLangBytecodeExport takes three arguments: a CSLscript_t C-SLang script in compiled format, a
pointer to a byte export function and a pointer argument passed transparently the bytecode export function.

A bytecode export function is a user-supplied void function that takes an int argument – a byte of the script in
export format, and a void * pointer that is interpreted as appropriate for the particular function.
CSLangBytecodeExport calls the byte export function for each byte produced, and it can do with those bytes
whatever it is designed for, e.g.:
• To collect as an array of bytes,
• To save in a disk file,
• To send over network,
• Alternatively, just to collect statistics about the script.

CSLangBytecodeExport calls the emit function repeatedly for every consecutive byte of the exported script.
The bytes are emitted in the following order

• Bytecode length (in bytes; including the length bytes), high byte
• Bytecode length, low byte
• The number of functions in the script
• Function registry, multiple bytes
• Bytecode of the registered function, multiple bytes

For example, exporting a trivial script from the previous section, the following bytes would be emitted:
0, 6 (length), 1 (number of functions), 0, 5 (offset of the function), 0Xxx (function termination symbol, the only
functional byte in the bytecode): total of 6 bytes.

For an example, let’s make a simple function calculating the length of the script in exported format:

struct length { unsigned char len[2]; unsigned short byte_count};
void len_dump(int c, void *arg)
{
 struct len_dump *p = arg;
 if (p->byte_count < 2) p->len[p->byte_count++] = (unsigned char)c;
 /* do nothing after collecting the two length bytes */
}

int script_length(CSLscript_t script)
{
 struct length L;
 int ret;
 L.byte_count = 0;
 ret = CSLangBytecodeExport(script, len_dump, &L);
 if (ret < 0) return ret; /* error code */
 return (L.len[0]<<CHAR_BIT)|L.len[1];
}

For debugging purposes one can use an emit function as simple as

unsigned char myBytecode[200];
int mycount=0;

void mydump(int c)
{
 myBytecode[mycount++] = (unsigned char)c;
}

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

12

This simply fills character array with emitted bytecode. Real world emit function(s) can be, of course, more
sophisticated. To create download modules written in C-SLang, emit function might write its argument character
to the output file on disk.

4.2 Running C-SLang on a Virtual Machine
There can be several C-SLang virtual machines (SVIRMs) in an application; you can choose, for instance, to run
one script on different SVIRMs or different scripts on a single SVIRM. To pick a SVIRM, we define it as a
variable of type SVIRM_t. (To demystify it: SVIRM_t is simply a struct type typedef ’ed in the header
cslpubl.h . So, if you find instruction by example inadequate, you can see all the fields of the structure in the
header.)

4.2.1 Initializing a SVIRM

4.2.1.1 SVIRM-related data types
To run a C-SLang script, a C-SLang virtual machine, SVIRM, must be first initialized. This means, it must be told
what “personality” to assume, that is, what are its

1. Input array
2. Output array
3. Temporary array
4. Input read function
5. Output write function

This information is aggregated in the following data type (from the header file cslpubl.h):

/* -- C-SLang Virtual Machine data type -- */
typedef struct SVIRM_t{
 inpbuf_t inp;
 outpbuf_t outp;
 tempbuf_t tempbuf;
 InpFunc_t *infunc;
 OutpFunc_t *outfunc;
} SVIRM_t;

where the InpFunc_t and OutpFunc_t are the types of “virtual physical” input and output functions
respectively:

typedef reg_t InpFunc_t(unsigned ionum);
typedef short int OutpFunc_t(unsigned ionum, outfunc_arg_t value);

and inpbuf_t, outpbuf_t, tempbuf_t, are the types of arrays of inputs, outputs and temporaries
respectively, specified by the start pointer and the length:
typedef struct {
 const inpvar_t *buf;
 unsigned char size;
} inpbuf_t;

typedef struct {
 outpvar_t *buf;
 unsigned char size;
} outpbuf_t;

typedef struct {
 tempvar_t *buf;

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

13

 unsigned char size;
} tempbuf_t;

SVIRM_t structures can be kept const if so desired.

Additionally, the SVIRM will use two RAM areas while running the script.
One contains current run information – emulated registers, status and so on; it has fixed size, and it is generally of
no interest to the user. It must be instantiated though in the user code, like
 CSLangRun_t myrun;
so, its type, CSLangRun_t, is provided in a header automatically included with slpubl.h .

The second RAM data element is a so-called control stack; it is used to keep track of C-SLang constructs that
change natural program flow of the script (e.g., function calls). The right size of control stack is anyone’s guess,
just as size of normal stack in normal programming. If you know in advance what scripts you are going to run,
you can choose the size at compile time. One way or another, the user must define an array of type CtlStack_t
(#define ’d in slpubl.h) to the SVIRM, something like
 CtlStack_t ctlstack[MAX_DEPTH];
and supply it in your program to the SVIRM.

4.2.1.2 SVIRM initialization functions
To initialize a SVIRM, you call one of the two functions, depending on whether the script to run is in compiled or
in exported format. As always, freedom (of configuration) comes at a price. Initialization of SVIRM is something
that very few people will call elegant.

If the script is in compiled format, the initialization function prototype is this:
int CSLangInitCom(CSLangRun_t *run, CSLscript_t script,
 SVIRM_t const *svirm, CtlStack_t *stack, unsigned short n);

Here, run is the pointer to runtime environment to be initialized, script is the script to run, svirm is the memory
and I/O configuration, stack is the pointer to a control stack array and n is the number of elements in the control
stack array.
The function returns an error code, 0 being “OK.” Error codes are described in a section further below.

If the script is in exported format, the initialization function prototype is this:
int CSLangInitExp(CSLangRun_t *run, const unsigned char *script,
 SVIRM_t const *svirm, CtlStack_t *stack, unsigned short n);
The only difference is the type of the script argument, which in exported format is a sequence of bytes.

This interface is flexible enough to allow reusing memory areas via mix-and-match: One can initialize one or
several run structures with different scripts or the same script, and using the same or different SVIRMs or control
stacks.
In particular, combining a script with different SVIRMs can produce rather cool effects. For instance, to
disconnect the C-SLang engine from physical inputs of the system and have it use pre-recorded inputs played
back, you just replace the SVIRM with another SVIRM with accordingly different input function.

4.2.2 Running C-SLang scripts
To run a C-SLang script, after runtime environment has been initialized, you just call the function CSLangExec;
its prototype is
 int CSLangExec(CSLangRun_t *run);

The function returns a completion code, CSL_DONE indicating the successful end of the script execution.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

14

4.3 Debug Interface
If C-SLang engine is compiled with CSL_DEBUG #define ’d in the header file csl_opt.h (default) then a
limited debug interface is available. It can be useful for debugging C-SLang scripts, since the programmer can
monitor the script execution progress and inspect public members of the CSLangRun_t structure (such as the
virtual registers)

4.3.1 Single-Step Execution
After runtime environment has been initialized, you can call SCLangSetSingleStep to enable or disable
(default) single-step execution. The function’s prototype is
 void SCLangSetSingleStep(CSLangRun_t *run, unsigned char sstep);

If sstep is a zero, single step is disabled (default); otherwise, it is enabled.

If single step is enabled, CSLangExec returns after executing one C-SLang instruction; if there were no errors, it
returns CSL_DONE if the end of the script was reached, or CSL_STEP_COMPLETED otherwise. To continue
script execution after CSLangExec returns CSL_STEP_COMPLETED, call it again. Some sort of a loop is a
likely arrangement here.

Single step can be enabled or disabled at any time.

4.3.2 Breakpoints
A breakpoint specifies the function (by 0-based number of it in the script registry section) and the (0-based)
instruction number within the function. Breakpoints are arranged as a list with last element referencing NULL:
typedef struct CSLbp_t{
 struct CSLbp_t *next;
 unsigned char func_id;
 unsigned short instr;
} CSLbp_t;

To set breakpoints – the whole list at once – call the function SCLangSetBreakpoints; its prototype is here:

void SCLangSetBreakpoints(CSLangRun_t *run, const CSLbp_t *breakpoints);

To change the set of breakpoints, call SCLangSetBreakpoints with another list. To disable breakpoints,
pass NULL as the list pointer.

If single step is enabled, breakpoints have no effect. Otherwise, CSLangExec will return CSL_BREAKPOINT
each time it successfully reaches the point just before executing an instruction identified in one of the breakpoints
in the list.

Similar to single-step, to continue script execution after CSLangExec returns CSL_BREAKPOINT, call it again.
Some sort of a loop is a likely arrangement here, too.

4.4 Completion Codes
On success, CSLangExec returns one of the following positive codes, #define ’d in cslpubl.h :

• CSL_DONE – Run completed; no errors encountered
• CSL_STEP_COMPLETED – An instruction completed in single-step mode
• CSL_BREAKPOINT – A breakpoint is reached

CSLangExec, CSLangBytecodeExport, CSLangInitCom and CSLangInitExp may detect and return
the following negative codes, also #define ’d in cslpubl.h :

• CSL_CALLS_TOO_NESTED – control stack turned out to be of insufficient size

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

15

• CSL_UNIMPLEMENTED_OPCODE – the instruction requested is not implemented. If your script is
generated correctly, you should never see this code

• CSL_NONWRITEABLE_TARGET – an attempt is made to move or store data in a Literal or InpVar
• CSL_WILD_EOLOOP – an EndLoop instruction was encountered without a matching Loop instruction
• CSL_ILLEGAL_REPEAT – a Repeat prefix was used with an instruction that does not admit it
• CSL_BADINSTR – a bad instruction in the script. If your script is generated correctly, you should never

see this code
• CSL_UNIMPLEMENTED_FUNCTION – a VPIO (input or output) function call was required but the

NULL function was specified in the SVIRM
• CSL_INDEX_LIMIT – array limit exceeded. The same code is used for input, output and temporary

array boundary violation
• CSL_ZERODIVIDE – an attempt to divide by 0
• CSL_FUNCTION_INDEX – an invalid destination function index for a script function
• CSL_CSRIPT_TOO_LONG – script length doesn't fit 2 bytes
• CSL_BADARG – an invalid argument was passed, such as NULL runtime environment

In addition, CSLangExec considers a non-zero value returned by a function as an error (such as a manifestation
of an I/O error). If CSLangExec encounters such a value, it is treated as the error code; CSLangExec
immediately returns to the caller with the propagated error code.

Here lies a great opportunity to confuse C-SLang engine by writing VPIO functions that return codes conflicting
with those reserved by C-SLang. Don’t do that! It is a good practice to have VPIO functions return negative error
codes less than –512.

5. Examples of C-SLang Scripts
C-SLang distribution comes with a few sample files. One purpose of them is to provide a small regression test: the
test application linked with them should give the same results as the reference results file provided in the
distribution. Another purpose of the sample files is to demonstrate the use of C-SLang.

Here is a brief description of the sample files.

5.1 (sample1.c) User macros
This file illustrates the fact that you can #define C-SLang macros like C macros, and use them as an extension of
the C-SLang instruction set. E.g.,
#define div256 \
 MulDiv(Literal, 1, 2) \
 MulDiv(Literal, 1, 128)
.
 Repeat(Literal, 4) LoadA(InpVar, 0)
 div256 /* illustrates a macro */
 Repeat(Literal, 4) StoreAExt(OutpVar, 0) /*store divided value*/

This fragment also illustrates a use of the Repeat prefix with LoadA and StoreAExt instructions.

5.2 (sample2.c) A string problem
This is an example of a string problem for which class C-SLang was not optimized: to find the number of
occurrences of the first character in the input string. Here is the complete code:

ScriptStart (Charcount)
RegStart(
 RegFunc(charcount)
 RegFunc(charhelper)

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

16

 RegFunc(increment)
)
/*Count the number of occurences of the first
 character in the input string
*/
Function (charcount)
 ClearX
 StoreX(TempVar, 1) /*counter*/
 Call(charhelper) /*a hand-made loop must be a separate function */
 Move(TempVar, 1, VPIO, 0) /*output the result*/
EndFunction
/*Illustrates a function wrapper for a loop*/
Function (charhelper)
 LoadAI(InpVar, 1) /* InpVar[1+X] loaded */
 Subtract(Literal, 0) /*Check for 0 character*/
 RetZ /*return if end*/
 Subtract(InpVar, 0) /*Compare with char*/
 CallZ(increment) /*Increment if equal*/
 MoveXA /*Increment index X */
 Add(Literal, 1)
 MoveAX
 Jump(charhelper) /* repeat */
EndFunction
Function (increment)
 LoadA(TempVar, 1) /* increment TempVar 1 */
 Add(Literal, 1)
 StoreA(TempVar, 1)
EndFunction
EndScript

This simple script illustrates a technique to arrange a loop (see Function (charhelper)). Since we don’t
know the string length in advance, we cannot use the Loop/EndLoop mechanism. On the other hand, Jumps are
allowed only to functions. So, we have to extract the loop body into a separate function. Note that if the input
array does not contain a 0 character, the execution of this script would continue until the array boundary is hit, at
which point the execution would terminate with error code CSL_INDEX_LIMIT .

The call of increment within charhelper also illustrates that a conditional block must be a separate
function.

Finally, this script illustrates that counting via addition is rather awkward, and a counting instruction is probably
the most likely to be implemented in the next release of C-SLang.

5.3 (sample3.c) A simplified SAE J1978 message response
This section describes a simplified yet more involved example. The example comes from serial communications
message processing area and is related to SAE J1978 diagnostic messages over SAE J1850 network with 3-byte
header format. If this description looks intimidating, fear it not. We simply assume that InpVar contains a
received message (InpVar 0 being its length), and we must process it as follows:
1. If the length less than 4, ignore the message
2. If the five least significant bits of the first byte of the message are wrong, ignore it
3. If byte 2 is not 0x10 or 0xFE, ignore the message
4. If bit 6 of byte 4 is set, ignore the message
5. If byte 4 (“mode”) is found among “supported modes” 0x12, 0x14, 0x17, 0x19, 0x20 then prepare a “positive

response” in the OutpVar array and store the “mode” in VPIO 0 (to cause the appropriate native
processing); otherwise, prepare a “negative response” in OutpVar. Again, byte 0 of the OutpVar is the
length of the response message.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

17

6. For simplicity, our positive response will be 4 bytes long; for an input message
 Byte1, Byte2, Byte3, Byte4, …
it will be
 Byte1, Byte3, 0x10, (Byte4 | 0x40).

7. Our negative response will be
 Byte1, Byte3, Byte2, 0x7F, Byte4, …, ByteLast, 0x11,
i.e., all received message bytes from Byte4 to the last byte (but no more than Byte9) are copied to the
OutpVar, followed by error code 0x11.

Here is an implementation:

ScriptStart (SAE_example)
RegStart(
 RegFunc(SAEMessage)
 RegFunc(PositiveResp)
 RegFunc(NegativeResp)
 /* mode-specific functions are registered
 in the order convenient for ComputedCall
 */
 RegFunc(Mode12)
 RegFunc(Mode14)
 RegFunc(Mode17)
 RegFunc(Mode19)
 RegFunc(Mode20)
)
Function(SAEMessage)
 Move(Literal, 0, OutpVar, 0) /* resp. length 0 means 'ignore' */
 LoadA(InpVar, 0) /* length */
 Subtract(Literal, 4)
 RetNeg /* if too short a message */
 LoadA (InpVar, 1)
 /* check header format */
 And(Literal, 0x1F)
 Subtract(Literal, 0x0C)
 RetNotZ /*return if wrong format*/
 /* check the target address */
 CheckList(InpVar, 2, 2, Literal, 0x10 CSLIST 0xFE)
 RetNeg /*return if no match*/
 /* check if it is a request */
 LoadA(InpVar , 4)
 And(Literal, 0x40)
 RetNotZ /* return if not a request */
 /* check if the mode is supported */
 CheckList(InpVar, 4, 5, Literal,
 0x12 CSLIST
 0x14 CSLIST 0x17 CSLIST
 0x19 CSLIST 0x20)
 JumpNeg(NegativeResp) /* not supported: negative response */
 ComputedCall(Mode12) /* mode supported: process it */
 Call(PositiveResp) /* and prepare positive response */
EndFunction

Function (PositiveResp)
 Move(Literal, 4, OutpVar, 0) /*default response length*/
 Move(InpVar, 1, OutpVar, 1) /* first three bytes are header */
 Move(InpVar, 3, OutpVar, 2)

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

18

 Move(Literal, 0x10, OutpVar, 3)
 LoadA(InpVar, 4)
 Or(Literal, 0x40) /*mode: response to the request*/
 StoreA(OutpVar, 4)
EndFunction

Function(NegativeResp)
 Call (PositiveResp) /* make header */
 Move(Literal, 0x7F, OutpVar, 4) /*negative response*/
 LoadA(InpVar, 0) /*Length of the input message*/
 Add(Literal, 2)
 Minimum(Literal, 11)
 StoreA(OutpVar, 0) /*length of neg. response */
 MoveAX
 MoveI(Literal, 0x11, OutpVar, 0) /* response code => the last byte */
 Subtract(Literal, 5) /* - Header length */
 RetNegZ /* return if nothing to copy*/
 RepeatA /* Is the number of bytes to copy */
 Move(InpVar,4, OutpVar,5)
EndFunction
/* dummy mode processing functions */
Function(Mode12)
 Move(Literal, 0x12, VPIO, 0)
EndFunction
Function(Mode14)
 Move(Literal, 0x14, VPIO, 0)
EndFunction
Function(Mode17)
 Move(Literal, 0x17, VPIO, 0)
EndFunction
Function(Mode19)
 Move(Literal, 0x19, VPIO, 0)
EndFunction
Function(Mode20)
 Move(Literal, 0x20, VPIO, 0)
EndFunction
EndScript

This script illustrates the use of the CheckList instruction in SAEMessage. It is used one time to check the
message target address match, and the second time to arrange computed call to a request-specific processing
function.
The end of NegativeResp demonstrates array copying with a single prefixed instruction.

6. Instruction Set Reference

6.1 General
A function in C-SLang is a sequence of instructions. Operands of an instruction depend on the instruction itself.
Generally, they are of the variable spaces described earlier. Some instructions restrict the types of operands.

The instruction set was designed with resulting code density as the highest priority. The resulting language bears
some resemblance of Motorola 6800 and Intel 8086 Assemblers as well as FORTRAN. A deeper look might also
find remnants of COBOL and Java in this eclectic mix. The result is not a truly elegant language but it does
provide a very good code density.

All instructions fall into one of the four categories:

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

19

• Move
• Arithmetic (and logic)
• Control
• Miscellaneous

These categories are described in detail below.

6.2 Address Spaces and Arithmetic Types of Operands
A numeric operand of a C-SLang instruction must have a type attribute, which identifies its address space. The
following attributes are valid:

• Literal – an unsigned byte-wide value, unsigned char
• InpVar – an element of the array of “input variables,” inpvar_t
• OutpVar – an element of the array of “output variables,” outpvar_t
• TempVar – an element of the array of “temporary variables,” tempvar_t
• VPIO – if a type of a source operand, a value produced by the “input function,” reg_t; if a type of a

destination operand, a value used by the “output function,” outfunc_arg_t.

It is important to understand how the user-supplied types affect the results of C-SLang instructions.

For uniformity, and in order to circumvent “undefined behavior” of C constructs, the value of a source operand is
first promoted to reg_t and then, for all instructions except those including comparison (Minimum and
CheckList), to unsigned long . It means that on a typical binary machine, if the type of source operand is
narrower than unsigned long , then it is zero-extended if the operand type is unsigned, and it is sign-extended
if the operand type is signed.

The operation is performed on unsigned long operand(s) and the result is demoted to the type of the
destination operand. On a typical binary machine, it means discarding the higher-order bits that do not fit the size
of the destination operand.

This logic may be simplified or entirely optimized out by the compiler, but it is necessary to understand the
semantics of it.

With respect to arithmetic operations, this logic means that multiplication and division work on unsigned types
and that addition and subtraction would work with signed types as expected on machines where negative numbers
are represented in 2’s complement format (which is nowadays typical if not universal).

It is recommended that tempvar_t be at least as wide as inpvar_t and outpvar_t, and that reg_t be at
least as wide as inpvar_t, outpvar_t and tempvar_t.

6.3 Move Class Instructions
As the class name implies, these instructions move (in fact, copy) data from one location to another. If a quantity
is moved to a wider location, it is extended according to its type: Unsigned types are zero-extended and signed
types are sign-extended. If a quantity is moved to a narrower location, only the corresponding number of its least-
significant bits is actually moved.

Important note: All Move class instructions can be modified by Repeat prefixes. See description of Repeat for
details.

6.3.1 Move, MoveI
General-purpose move (Move) or indexed Move (MoveI)
Syntax:

Move(< source_type>, < source_number>, < target_type>, < target_number>)

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

20

The instruction moves parameter number <source_number> of the type <source_type> to
parameter number <target_number> of the type <target_type>.

MoveI(< source_type>, < source_number>, < target_type>, < target_number>)
The instruction moves parameter number <source_number>+IndexRegister of the type
<source_type> to parameter number <target_number>+ IndexRegister of the type
<target_type>. If <source_type> is Literal, though, the value is not indexed.

Examples:
Move(Literal, 17, OutpVar, 4)
This assigns a value of 17 to the output variable 4.
MoveI(Literal, 17, OutpVar, 4)
Assuming index register X=6, this assigns a value of 17 to the output variable 4+6=10.
Move(VPIO, 0, VPIO, 1)
The input function is called with the argument 0; then the output function is called with the value
returned by the input function as the first argument, and with 1 as the second argument.

Length:
3 bytes.

Restrictions:
<target_type> cannot be Literal or InpVar.

6.3.2 LoadA, LoadAI, LoadX, LoadXI
Load pseudo-registers (Accumulator A or index register X).
Syntax:

Load<Reg>[I](< source_type>, < source_number>)
where <Reg> is either A or X. The instruction moves parameter number <source_number> (or, if
the ‘I’ suffix is supplied, <source_number>+(content of X)) of the type <source_type> to the
named register.
No indexing is performed on literals.
IMPORTANT: See Repeat description on how Load instructions are affected by it.

Example:
LoadA(Literal, 17)
This assigns a value of 17 to the accumulator.

Assuming index register X = 6,
LoadXI(Literal, 17)
assigns a value of 17 to X. Using LoadXI with literals makes code more obscure. Use LoadX instead.
LoadXI(TempVar, 17)
This assigns a (possibly, promoted) value of temporary variable 23(=17+6) to the index register.

Length:
2 bytes.

Restrictions:
None.

6.3.3 StoreA, StoreAI, StoreX, StoreXI
Stores accumulator A or index register X.
Syntax:

Store<Reg>[I](< target_type>, < target_number>)
where <Reg> is either A or X.
The instruction copies the value in the named register to the parameter number <source_number>
(or, if ‘I’ suffix is supplied, <source_number>+(content of X)) of the type <source_type>.

Examples:

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

21

StoreA(OutpVar, 17)
This assigns a value from accumulator to output variable 17.
Assuming index register X = 6,
StoreXI(TempVar, 17)
This assigns the value 6(=X) to temporary variable 23(=17+6).

Length:
2 bytes.

Restrictions:
<target_type> cannot be Literal or InpVar.

6.3.4 MoveAX, MoveXA
Moves accumulator A to index register X (MoveAX), or X to A (MoveXA).
Syntax:

MoveAX
MoveXA

Example:
Assuming index register X = 6, accumulator A=1234
MoveAX
This assigns the value 1234(=A) to X.
Assuming again index register X = 6, accumulator A=1234
MoveXA
This assigns the value 6(=X) to A.

Length:
1 byte.

Restrictions:
None.

6.3.5 StoreAExt
Stores the least-significant byte (CHAR_BIT bits) of the Accumulator in the destination address and shifts the
Accumulator a byte to the right. The CHAR_BIT most-significant bits of the Accumulator are filled with zeros
regardless of whether the reg_t type is signed or not.
Syntax:

StoreAExt<target_type>, < target_number>)

Examples:
StoreA(OutpVar, 17)
Assuming A=0xFEDCBA55 and CHAR_BIT=8, the instruction writes 0x55 in the output variable 17
and 0x00FEDCBA to the Accumulator.

Length:
2 bytes.

Restrictions:
<target_type> cannot be Literal or InpVar.

6.4 Arithmetic and Logic Class Instructions
All arithmetic and logic instructions perform an operation on the accumulator A and an operand and store the
result back in the accumulator. The opcodes can have optional ending A or X; in this case, the operand is the
Accumulator itself or the Index Register, respectively.

The following instructions are supported:
• Add – addition
• Subtract – subtraction

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

22

• Or – bitwise logical OR
• And – bitwise logical AND
• XOr – bitwise logical exclusive OR
• Minimum – minimum
• MulDiv – multiplication and division

6.4.1 Instructions with Opcodes without endings
These instructions perform a binary operation on the accumulator A.
Syntax (generic):

Opcode(< source_type>, < source_number>)
The instruction performs the Opcode operation on the accumulator register and parameter number
<source_number> of the type <source_type> and stores the result in the accumulator register.

Example:
Add(Literal, 17)
This adds 17 to the accumulator.

Length:
2 bytes.

Restrictions:
None.

6.4.2 Instructions with Opcodes with endings
These instructions perform a binary operation on the accumulator A.
Syntax (generic; ending E stands for X or A):

Opcode<E>
The instruction performs Opcode operation on the accumulator register and (depending on the ending
being A or X) the accumulator or the index register and stores the result in the accumulator register.

Example:
AddA
This doubles the accumulator.
SubtractX
This subtracts the index register from the accumulator.

Length:
1 byte.

Restrictions:
Redundant or useless opcodes, like XOrA are not defined or implemented.

6.5 Control Class Instructions
Instructions in this class change the flow control of the script execution. The following instructions are supported:
• Call
• Ret
• Jump

The first three instructions change flow control within the same script. The last one calls (by number) a function
listed in native function table.

Each of the four instructions can have an ending making them execute conditionally depending on the (signed)
value of accumulator register A. The endings are:
• Z – execute if A==0; otherwise skip to the next instruction
• NotZ – execute if A!=0 ; otherwise skip to the next instruction

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

23

• Pos – execute if A>0; otherwise skip to the next instruction
• PosZ – execute if A>=0; otherwise skip to the next instruction
• Neg – execute if A<0; otherwise skip to the next instruction
• NegZ, – execute if A<=0; otherwise skip to the next instruction

Note: Ret must have an ending.
Note: If the user-supplied register type, reg_t, is an unsigned type, Neg is useless and PosZ is unconditional.

6.5.1 Call
Syntax:

Call[Ending](< Function_name>)
This instruction passes the control to the function <Function_name>. After the called function
returns, control is passed to the instruction following the Call.

Example:
CallNotZ(Police)
This executes the function Police in the same script, but only if accumulator is non-zero.

Length:
2 bytes

Restrictions:
Called function must be registered in the current script.

6.5.2 Ret
Syntax:

Ret<Ending>
This instruction returns control to the caller function (or exits the script execution if the function is top-
level), but only if the condition specified in Ending is true. Note that for this instruction, Ending is
mandatory.

Example:
RetNotNeg
This returns from the current function to the caller in the same script, but only if accumulator is zero or
positive.

Length:
1 byte.

Restrictions:
None.

6.5.3 Jump
Syntax:

Jump[Ending](< Function_name>)
This instruction passes the control to the function <Function_name >. When the jumped-to function
returns, control is passed as if current function returned.

Example:
JumpNotZ(Fence)
This gives up control to the function Fence in the same script, but only if accumulator is non-zero.

Length:
2 bytes

Restrictions:
Jumped-to function must be registered in the current script.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

24

6.6 Miscellaneous Class Instructions
Instructions in this class are of odd (important, though) variety and are described individually below.

6.6.1 Loop
Syntax:

Loop
This instruction begins a loop, which ends with corresponding EndLoop (see below).

Example:
Loop

Length:
1 byte

Restrictions:
None.

6.6.2 EndLoop
Syntax:

EndLoop
This instruction ends a loop, which begins with corresponding Loop instruction. It checks if the index
register X is greater than 0, and if so, passes control to the instruction immediately following the
corresponding Loop instruction. It follows from this description that a loop body (i.e., everything
between Loop and EndLoop) is executed at least once (like FOR in FORTRAN or do/while in C), even
if X was negative in the beginning.
Note: Loop/EndLoop construct uses a fixed loop counter, so nested loops, while technically possible,
have limited use and require clever manipulation of the index register. Also, calling a function from
within a loop, while legal, is a risky business, because a called function can inadvertently modify the loop
counter.
Note: For non-negative X, the loop runs (X)+1 times (provided X is not modified within loop).

Example:
LoadX(Literal, 10)
Loop

MoveI(Literal, 0, TempVar, 3)
EndLoop
This clears 10+1 temporary variables 13, 12, 9, …, 5, 4, 3.

Length:
1 byte

Restrictions:
None.

6.6.3 Repeat, RepeatA, RepeatX
Syntax:

Repeat(type, num)
Repeat<Reg>
where < Reg> is either A or X.

These are not real instructions but rather the prefixes modifying the next instruction (of Move Class or
Arithmetic and Logic Class only). First, the next instruction is executed the number of times specified in
the operand (variable number num of type type for Repeat, content of Accumulator for RepeatA,
content of index register for RepeatX); the operand itself remains unchanged (unless changed by the
instruction itself). Prefixed instruction executes at least once, even if repeat counter is less than 0.
Second, the address of the operand of the next instruction (if it is not of Literal type) is modified by
adding the current repeat count (zero-based).

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

25

Using Repeat prefix with Load instructions seemingly makes no sense. To take advantage of the
opportunity to fill the void, the Repeat prefix modifies the behavior of Load instructions in the
following way:
If a Load instruction is executed not for the first time, then the previous content of the Accumulator is
shifted left by a byte (i.e., CHAR_BIT bits), and the least significant byte is filled with the least
significant byte of the operand.

Examples:
ClearA
Repeat(Literal, 10) Add(InpVar, 1)
This calculates the sum of ten input variables 1, 2, …, 10.

Repeat(InpVar, 10) Move(Literal, 0x55, OutpVar, 1)
This fills a few (namely, whatever number is in input variable 10) output variables, starting with output
variable 1, with the hex pattern 55.

ClearA
RepeatX XOr(InpVar, 1)
This calculates the exclusive OR of input variables 1, 2, …, total of the value of index register.

Repeat(Literal, 4) LoadX(Literal, 0x55)
Assuming X has 32 bits and CHAR_BIT=8, this loads 0x55555555 to X.

Repeat(Literal, 3) LoadA(InpVar, 0)
Assuming that A has 32 bits, that inpvar_t is signed char and that input array contains 0xAA,
0xAB, 0xAC, this makes A = 0xFFAAABAC where FF comes from sign-extending the first byte, 0xAA.

Length:
2 bytes (Repeat), or 1 byte (RepeatA, RepeatX).

Restrictions:
Allowed only for Move Class or Arithmetic and Logic Class instructions.

6.6.4 CheckList
Syntax:

CheckList(type, num, n, List_type, Arg_List)
where is a CSLIST-separated list of numbers:
Arg_List ::= num | Arg_List CSLIST num.

This instruction checks whether the value of variable num of type type is found among the members of
Arg_List of a specified (namely, List_type) type. If it finds the match, it puts its 0-based ordinal
number in the accumulator; otherwise, it puts a –1. If more than one match is found, the one with the
least number is used.
n is the number of elements in Arg_List and is considered a byte-wide literal. List_type is the
common type of elements Arg_List.
Warning: The number of list argument must be exactly n. The script cannot be executed correctly if it is
not so.

Example:
CheckList(InpVar, 0, 4, InpVar, 3 CLIST 4 CLIST 12 CLIST 45)
This checks whether input variable 0 is equal to one of the four input variables 3, 4, 12, or 45. For
instance, if InpVar 0 is 0x11, and InpVar 3, 4, 12 and 45 are equal to 0x0f, 0x11, 0x10, 0x11, a value
1 (first match number) is assigned to the Accumulator.

Length:
4 + length-of-the-list bytes

Restrictions:

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

26

None.

6.6.5 ComputedCall and ComputedJump
Syntax:

ComputedCall(< function_name>)
ComputedJump (< function_name>)
These instructions do nothing if accumulator A is negative. If it is non-negative, the ComputedCall
instruction calls, and the ComputedJump instruction jumps to the function, which is registered at the
offset A (0-based) from the function <function_name>, supplied as the argument. Both instructions
can work in concert with CheckList instruction: CheckList would calculate the offset that
ComputedJump would use.

Example:
RegStart(
 ...
 RegFunc(MyFunc)
 RegFunc(YourFunc)
 RegFunc(HisFunc)
 RegFunc(HerFunc)
 ...
)
...
LoadA(Literal, 2)
ComputedCall(MyFunc)
...
In this example, ComputedCall will call HisFunc , which is at offset 2 from the argument function
MyFunc.

Length:
2 bytes

Restrictions:
None.

6.6.6 ClearA
Syntax:

ClearA
This instruction clears the accumulator register.

Example:
ClearA

Length:
1 byte.

Restrictions:
None.

6.6.7 ClearX
Syntax:

ClearX
This instruction clears the index register.

Example:
ClearX

Length:
1 byte.

Restrictions:
None.

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

27

6.6.8 Comp1 and Comp2
Syntax:

Comp1
Comp2
This instruction computes 1’s complement or 2’s complement respectively of the accumulator register.

Example:
Comp1

Length:
1 byte.

Restrictions:
None.

6.6.9 ExchangeAX
Syntax:

ExchangeAX
This instruction exchanges value of accumulator and index register.

Example:
ExchangeAX

Length:
1 byte.

Restrictions:
None.

6.6.10 MulDiv
Syntax:
 MulDiv(type, m_num, d_num)

This instruction treats all arguments multiplies the Accumulator by the parameter # m_num of type
type. The product is then divided by the parameter # d_num of the same type type, and the quotient is
cast back to reg_t and assigned to the Accumulator. Any overflow is ignored. Division by zero causes
runtime error CSL_ZERODIVIDE.

Example:
MulDiv(Literal, 5, Literal, 2)
This multiplies the Accumulator by 2.5.

Length:
 3 bytes.
Restrictions:
 None.

7. Frequently Asked Questions

7.1 My embedded application does not use C runtime library. Can I still use C-
SLang?

Yes. C-SLang doesn’t use any runtime library functions exactly because it can target small embedded
applications. Nor does it use any standard macros, except CHAR_BIT, which is #define ’d in the standard
header limits.h . If your compiler does not have or does not use this header, you must #define CHAR_BIT
according to your system’s architecture. But NULL is #define ’d in case you do not include standard header(s).

C-SLang: Portable script language embedded in C code

© 1999-2003 MacroExpressions http://www.macroexpressions.com

28

7.2 How many different scripts can run simultaneously?
In principle, you can run any number of C-SLang scripts on any number of C-SLang virtual machines; there is no
limitation on C-SLang side.

7.3 My operating environment allows pre-emptive and cooperative tasks. How
do I schedule runs of C-SLang scripts?

It’s a truism to say that the answer depends on your application. In general, you should use pre-emptive
scheduling only if cooperative scheduling is for some reason not sufficient.

C-SLang engine doesn’t make use of its own memory, and as such is fully reentrant and safe to use in pre-emptive
multitasking.

Whatever the kind of multitasking you choose, make sure that two conditions are met:

• Memory passed to C-SLang to create runtime environment has no conflicts with multitasking, and
• VPIO input and output functions are safe for multitasking

Incidentally, calling CSLangExec from an interrupt service routine is generally not a very good idea, because
interpreting a script can take a while. You may go for it, though, if the script is known to be small and you have a
fairly mighty processor. In this case, treat it the same way as pre-emptive scheduling.

Threads should be treated like pre-emptive tasks.

If CSLangExec takes too much time in cooperative multitasking environment, you may employ debug interface
to run the script piecemeal.

7.4 Do I need separate control stacks for different scripts?
No, as long as your scripts cannot run simultaneously. Yes, if the scripts can run at the same time.

7.5 How do I debug a C-SLang script?
Use C-SLang debug interface.

It is a good idea to debug a C-SLang script using a nice integrated development environment, like that of Visual
C/C++. For instance, you can execute SCLangSetSingleStep and SCLangSetBreakpoints by typing
the call statement in the watch window right during debug session. If you plan to use the script in exported format,
you can export it right from your debugging session using linked-in CSLangBytecodeExport function.

