
C/C++ code unit testing on a shoestring

Ark Khasin (akhasin@macroexpressions.com)

MacroExpressions

Abstract
Safety standards such as IEC 61508 make entry threshold to safety-related software
(firmware) products rather high, including, not in the least, the effort required for
unit testing. Automation tools do exist (e.g. LDRA Testbed or IPL Cantata++) but
they cost arm and leg and have problems of their own, such as compiler adaptation
and steep learning curve.

Much of the requirements can be met by abusing the C preprocessor of your very
own standard-compliant C compiler. The technique grew out of the one I employed
for my customer where it was sufficient to satisfy the requirements of SIL level 2.

This paper outlines some of the possible techniques in the hope that you may find
them useful in evaluating your approach to unit testing and considering whether to
go with a commercial test automation tool or to do it yourself.

The techniques focus on C code but are equally applicable to C++.

Unit testing requirements
There is more to unit testing of safety-related code than testing of input-state-output
relationships: the test is supposed to look under the hood and demonstrate that the code
execution path is as expected (and, presumably, as designed), that the results of important
interim computations are correct and that all execution paths have been exercised.

The unit testing troika
The three horses that pull the cart of unit testing are:

 Test harness – a contrived code that executes the test cases which are invented to
test the unit under test

 Test stubs – optional functions (or macros) created to replace functions (or
macros) called from the UUT to abstract from the actual behaviors of the real
functions.

 Test instrumentation – code plugged into the UUT to expose its behaviors
normally not visible from the outside and to output “documentable” traces of
execution

Harness
A decent test harness might consist of a common execution framework and a series of
test cases pluggable into this framework but otherwise specific to the particulars of the
UUT.

mailto:akhasin@macroexpressions.com

A test automation tool creates an execution framework for you. This is of course useful
but the value of this service is not terribly high: You, all by yourself, can design and
implement the framework once and be done with it.

Test cases are to be devised and coded according to the nature of the unit under test. This
obvious truism allows, however, to put the claims of test automation tools in perspective.
When a vendor says their tool will generate test cases for you, this may be so, but the
cases generated in many (if not most) cases are not what you want. The reason is simple:
the automation derives the test cases from analysis of your code and has no knowledge of
the semantics implemented in it.

Take a simple example: you need to measure, say, hmmm… gullibility and raise an alarm
if it exceeds a user-configurable threshold, entered in the units of either gullibs or
credules.

Considering that the gullibility sensor and the A/D circuit have noise, you may decide, in
the design phase, that converting raw A/D read to gullibs or credules may easily tolerate a
fixed-point computation with an error of, say, five counts or e.g. 0.5%, as long as the
computation itself is very fast and/or simple. On the other hand, you probably want the
round-trip conversion of the threshold from gullibs to credules and back to gullibs to be
error-free. (Otherwise, the user will unwittingly change the threshold by simply changing
the units back and forth.)

The tests to cover this design are:
 Measurement conversion test. Verify that for all raw A/D values and other inputs

(such as sensor calibrations) the result differs from a naïve double-precision
calculation by at most five counts – or 0.5% as the case may be.

 Units conversion test. Verify that for all covered levels of gullibility the round-
trip conversion of the engineering units yields the original value.

Chances are, your production code will have no traces of the design requirements (other
than in comments, if you are particular enough). So it is unreasonable to expect test cases
generated automatically for the tests identified above: you have to code these tests
yourself. Note that it varies among the test automation tools how easy it is to integrate
your own tests with your own acceptance criteria into the vendor’s framework.

This is not of course to say that the no useful test cases can be generated automatically.
For instance, generating tests for a state machine is quite possible – simply because all
there is to a state machine ends up being in the code and can be analyzed.

Stubs
If a function you are testing calls a function in a different unit, you need to make a
decision on the testing approach: You can create a stub to replace the called function with
your own, or you can use the real function.

The decision depends on whether the UUT execution depends on what the called function
does (think of, e.g., strcpy) or whether you merely delegate creating some side effects
to that function. In the former case you obviously need a real (or an equivalent)
implementation. In the latter case, a stub will do, but it must announce that it has been
called.

Instrumentation
Creating instrumented code out of your production code comprises an intimidating
amount of menial labor. It is here where the test automation tools ought to shine. They
do, provided they parse your code and (important!) its dependencies correctly.

However, a lot of automation can be accomplished by using clever C macros. To get a
taste of it, consider a definition in file scope (i.e., outside of any block)
static short foo;
The problem is to inspect its value, say, before and after executing a test case, without
modifying your source file. While this seems impossible, we can do this if we have a
macro like this:
#define static /*nothing*/

Note that it is a valid C macro which makes foo a variable with external linkage. Your
harness code can now say:
extern short foo;
This trick won’t work though for static objects in a block scope: the macro will make
foo an automatic. This can be repaired by a variation on the theme:

#define static extern

This new macro turns an uninitialized definition into a declaration, and it turns out that it
is legal in C to put declarations any place you could put a definition. The definition itself,

short foo;

will then go to your test harness file.
An initialized definition, like

static long bar = 42;

will remain a definition (albeit unusual) of the variable bar, so you will need a
declaration in the harness file, like

extern long bar;

Note: This will break the compilation if you have a static variable defined with a
block scope (i.e. within curly braces). That’s because a definition of an external-linkage
object is illegal with in a block.
This may actually be a good thing because there are arguments to be made against using
static in block scope. Some coding standards prohibit this outright.

Other instrumentation techniques will be demonstrated in the next section. Our concern
now will be, where to put the macro responsible for the trick
#define static extern

We do not want this definition visible anywhere except in the unit under test. To achieve
this goal, let’s do the following.

Assume that there is a header file in your project that is included in every source file. It is
more than likely that you have one already; it might hold global project configuration
parameters and/or include common goodies like stddef.h and limits.h. Let’s say it
is called project.h, so all sources have a statement

#include "project.h"

Let’s now modify this ubiquitous project.h by adding the following:

#include "instrum.h"

This can be treated by project developers as a magic incantation; the header instrum.h
shall have no effect on the normal build process. However, it is responsible for creating
instrumentation when a source becomes the unit under test.

To achieve this variable behavior, we construct instrum.h to look as follows:

(Here and elsewhere in this paper I omit the standard header guards to avoid clutter. They
should be in place in real implementation.)

The idea of instrum.h is that in normal compilation of a source file,
INSTRUM_HEADER is not defined and the source compiles as it always did.

When, however, a source file, say foo.c, is the UUT, we create an instrumentation
header file for it, say, instrum_foo.h and pass the definition

INSTRUM_HEADER="instrum_foo.h"

on the command line of the compiler. (Usually, it’s a –D compiler switch, or an
equivalent configuration in the integrated development environment. Note that on
Windows platforms passing a quoted definition in the command line is a tricky dealing
with CMD.EXE; try INSTRUM_HEADER="\"instrum_foo.h\"".)

As we will see later, there is a good chance to use the same instrumentation header for all
sources to be unit-tested, say, instrum_uut.h. This approach will be our target, and
the definition to pass to the compiler is

INSTRUM_HEADER="instrum_uut.h"

The instrumentation header, instrum_uut.h, will look like so:

instrum.h

#ifdef INSTRUM_HEADER
include INSTRUM_HEADER

//abuse of static
#ifdef INSTRUM_STATIC
define static INSTRUM_STATIC
#endif /*INSTRUM_STATIC*/

//abuse of other keywords
............

#endif /*INSTRUM_HEADER*/

(Or it may have
#define INSTRUM_STATIC
or no definition for INSTRUM_STATIC at all, depending on the needs.)

That is, if instrumentation for static is not defined, the keyword will keep its normal
meaning. Otherwise, its meaning becomes whatever the instrumentation header assigns to
it; this remains completely transparent to the magic header instrum.h.

C code instrumentation
Now we are in a position to devise instrumentation of the code by abusing other
keywords.

Instrumenting the if statements
Following the pattern outlined in the previous section, let’s add the following to
instrum.h:

#ifdef INSTRUM_IF
define if(condition) INSTRUM_IF(condition)
#endif

The instrumentation header instrum_uut.h would have something like

#define INSTRUM_IF(condition) \
if(instrum_if(#condition, (condition)!=0, \
__FILE__, __LINE__, __FUNCTION__))

extern int instrum_if(const char *condition_name,
 int condition,
 const char *filename,
 int line,
 const char *function_name);

Implementation of the function instrum_if can be anything you want it to be, except
that in order not to alter the behavior of you code, it must return its second argument
(condition). For instance, the following implementation just prints what condition
was evaluated and if it is true or false:

int instrum_if(const char *condition_name,

instrum_uut.h

#define INSTRUM_STATIC extern

//abuse of other keywords
............

 int condition,
 const char *filename,
 int line,
 const char *function_name)
{
 printf("Condition %s in funtion %s"
 " (file %s line %d) is %s\n",
 condition_name, function_name,
 filename, line, (condition)?"true":"false");
 return condition;
}

This implementation goes to some instrumentation support source file. Of course this file
itself should not be instrumented.

Some (pre-C99) compilers might not define __FUNCTION__, or you might not care to
output the file name. Your implementation might be like so:

#define INSTRUM_IF(condition) \
if(instrum_if1(#condition, (condition)!=0, \
__LINE__))

extern int instrum_if1(const char *condition_name,
 int condition,
 int line);

with a corresponding implementation.

We will see later that instrumentation of other keywords will require a use of if. The if
will come there instrumented but we don’t want to see the effects of that instrumentation.
So a real instrumentation function for if must detect whether the if is a result of
instrumentation of something else and if so suppress all instrumentation actions.

Toward code coverage analysis
Assume for a moment that all your functions are written using only if/else
statements to control program flow.

A test achieves 100% code coverage if and only if every if statement was executed and
at least once the condition was false and at least once the condition was true (some people
call this “branch coverage”). If you always strive for 100% coverage (as you should), the
first condition can be dropped: A test achieves 100% code coverage if and only if the
following holds: If an if statement was executed then at least once the condition was
false and at least once the condition was true. This can be easily proved by induction on
block nestedness level.

If your INSTRUM_IF macro’s output uniquely identifies the specific if statement then
it is pretty straightforward to analyze the overall test output to see if every if statement
reported its condition both true and false at least once. Otherwise, a more involved
instrumentation is necessary.

Instrumenting the while statements
The while keyword can be replaced in a similar manner. We put in instrum.h:

#ifdef INSTRUM_WHILE
define while(condition) INSTRUM_WHILE(condition)
#endif

And of course a mutatis mutandis entry is added to the instrumentation specific header
such as instrum_uut.h.

extern int instrum_while(const char *condition_name,
 int condition,
 const char *filename,
 int line,
 const char *function_name);

#define INSTRUM_WHILE(condition) \
while(instrum_while(#condition, (condition)!=0, \
__FILE__, __LINE__, __FUNCTION__))

An implementation of the function instrum_while may, however, have a peculiarity.

There are two idioms, while(1) and while(0) which you may want to treat
differently. The first one is a synonym for for(;;) which I don’t particularly like but
the fact is that some reputable people do use it. The second one is a part of the
do{...}while(0) construct which is commonly used on two occasions: in macro
definitions to wrap a block and straight in the code to make the break statements do the
work of the dreaded goto <end-of-block>.

You might want to instrument while(1) as for(;;) and not instrument while(0)
at all. Here is a simple implementation of not instrumenting these idioms:
int instrum_while(const char *condition_name,
 int condition,
 const char *filename,
 int line,
 const char *function_name)
{
 if(strcmp(condition_name, "0") != 0 &&
 strcmp(condition_name, "1") != 0) {
 printf("Loop cond. %s in function %s "

 " (file %s line %d) is %s\n",
 condition_name, function_name,
 filename, line, (condition)?"true":"false");
 }
 return condition;
}

Of course an implementation like this should be kept in a file which is not instrumented.

Instrumenting the switch statements
If the goal of instrumentation is simply to announce the value of the controlling
expression of a switch statement, we can follow the pattern established above and
place

#ifdef INSTRUM_SWITCH
define switch(ctl_stmt) INSTRUM_SWITCH(ctl_stmt)
#endif

in instrum.h etc.

This would be good enough for establishing a regression base and using it in regression
tests. However, if we want to prove code coverage, we need information on whether a
given case or default was hit. That is to say, we need to instrument the case and
default labels, which is our next subject.

Instrumenting the default statements
To instrument default, let’s follow our usual pattern and put in instrum.h

#ifdef INSTRUM_DEFAULT
define default INSTRUM_DEFAULT
#endif

Now, to sensibly define INSTRUM_DEFAULT, we need to use the default keyword
and to stick instrumentation code somewhere around. To do so, observe that if
falseval evaluates to 0, then

default:

in any context is functionally equivalent to

default: if(!falseval) a_unique_label:

and to

default: if(falseval) ; else a_unique_label:

between which two I don’t have a preference. (A unique label will be needed to consume
a dangling colon. It will remain unused, and most compilers will issue warnings about
unused labels. You can safely ignore or suppress them for the unit under test.)

For falseval we can take

(instrum_default(__FILE__,__LINE__,__FUNCTION__),
 !instrum_false)

where
extern void instrum_default(const char *filename,
 int line,
 const char *function_name);

is some function that e.g. announces hitting a default statement, and

extern int instrum_false;

is a variable with the value 0 in a different translation unit (so that the compiler is not
tempted to optimize anything out).

Note that because of the comma operator, the whole expression for falseval must be
parenthesized (because if is already a macro!)

For a unique label we can take a concatenation of the word instrum_label and the
line number (e.g. a unique label for line 2007 will be instrum_label2007). This is a
common C fare –

CAT(instrum_label, __LINE__)

where the CAT macro concatenates the two expanded arguments:

#define CAT1(a,b) a ## b
#define CAT(a,b) CAT1(a,b)

NOTE. You may choose to run your (instrumented) tests in the host environment when
possible. If you use Microsoft Visual C++ to build the executable, the construction of the
artificial label – CAT(instrum_label_, __LINE__) – may be broken because of
the broken implementation of __LINE__. To fix this, you can remove the support for
"Edit and Continue" (command-line option /ZI) in the project, or, for version 7.0 and
above, use the non-standard __COUNTER__ instead of __LINE__. Many thanks to Alf
P. Steinbach for pointing it out.
(Of course, other compilers may have their idiosyncrasies, too.)

Now we are in a position to put the pieces together and to define INSTRUM_DEFAULT
as follows:

#define INSTRUM_DEFAULT \
 default: \
 if((instrum_default(__FILE__,__LINE__,__FUNCTION__), \
 !instrum_false)) \
 CAT(instrum_label, __LINE__)

For this instrumentation to compile there cannot be two (or more) default labels on
the same line (or else we’ll produce two identical artificial labels). But for this to happen,
there must be two or more switch statements on the same line, which is not a terribly
good practice; we can ignore it. After all, if you do engage in this practice, a compilation
error will notify you.

There is a useful variation of this instrumentation of default, especially for people
who cannot stand the comma operator: Instead of making instrum_default a void
function, make it a function returning an int, and implement it to always return a zero. It
would then look like so:

#define INSTRUM_DEFAULT \
 default: \
 if(!instrum_default(__FILE__,__LINE__,__FUNCTION__) \
 CAT(instrum_label, __LINE__)

Instrumenting the case statements: a little help from a coding
style needed
Our next step is to instrument the case labels. That is, we are going to create a macro
case. For such a macro to be useful, we must somehow make the numeric label itself,
however indirectly, to participate in the macro expansion. The only sensible way of
achieving it that I found is to pass the label as a parameter to the macro. In other words,
we want something like this:

#define case(x) case(x): SOMETHING(x)

With this macro, consider
 case MYCASE:
 case 2007:
 case (HERCASE):
 case (HISCASE):
The first two occurrences of are not recognized as macro calls (missing parameter list)
and are not replaced. The third and the fourth occurrences are valid macro calls and will
be expanded as desired.

Looking at this example from the vantage point of writing the code, we can conclude that
for a case to end up being instrumented, its numeric label must be parenthesized. This,
admittedly, is not a common practice. But that’s how you need to write it to instrument
the statements in order to prove code coverage. This is a matter of your team’s coding
standard.

Having resigned to instrumenting only cases with parenthesized labels, let’s put a
macro implementation together. Following the pattern, put in instrum.h

#ifdef INSTRUM_CASE
define case(x) INSTRUM_CASE(x)
#endif

For the implementation of INSTRUM_CASE in instrum_uut.h, observe that, just
like for default, a passage

case(x):

is functionally equivalent to

case(x): if(!falseval) a_unique_label:

Following the same pattern as for default, we can do the following:

#define INSTRUM_CASE(x) \
case(x): if((instrum_case(#x, x, \
__FILE__, __LINE__, __FUNCTION__), !instrum_false)) \

 INSTRUM_CAT(instrum_label, __LINE__)

where instrum_case is an appropriately defined function. The type of the second
parameter must be large enough to hold any label used in your application’s switch
statements. Hopefully, long long will do, if your compiler provides it.

As with default, it is easy to do away with the comma operator.

It is not uncommon to see several cases in a single line if they have common
implementation, like
 case (HERCASE): case (HISCASE):
The instrumented code won’t compile because of a duplicate definition of the artificial
label. Again, if you want to use this instrumentation, make it a rule to place a case in
its own line. If you don’t, the compiler will notify you.

Instrumenting the for statement
The syntax of the for statement makes it difficult to invent an abusive instrumentation
macro replacement in a generic way. It is not easy to get to the loop control expression
which would be the key: recall that the purpose is to ensure that the control expression
was at least once true and at least once false. About as much as one can do is this:
#ifdef INSTRUM_FOR
#define for(triplet) INSTRUM_FOR(triplet)
#endif

in instrum.h, and in instrum_uut.h put

#define INSTRUM_FOR(triplet) \
 for(triplet) \
 if((instrum_for(__FILE__,
 __LINE__, __FUNCTION__),instrum_false)) ; \
 else

Explanation of this macro goes exactly as that for INSTRUM_DEFAULT and is omitted
here.

This instrumentation may be useful for regression testing. To make the instrumentation
more useful for proof of code coverage, we need to resort to the help of the coding
policy. We can require that instrumentable for statements have macro-ized controlling
expressions, i.e., instead of writing

for(expr1; expr2; expr3)

we write

for(expr1; ISTRUE(expr2); expr3)

where the non-instrumented ISTRUE macro is defined as identity macro, i.e.
instrum.h has

#ifndef ISTRUE
#define ISTRUE(e) e
#endif

An instrumented version in instrum_uut.h is e.g.

#define ISTRUE(e) \
 instrum_istrue(#e,(e),__FILE__,__LINE__,__FUNCTION__)

with an appropriate definition of the function instrum_istrue.

This affects the coding style even more intrusively than instrumentation of the case
labels, and therefore may affect your decision on whether to use this instrumentation or
not.

Instrumenting the break statements and others
There is nothing interesting to learn about a break statement other than that it was
executed. A definition like this will do:

instrum.h
#ifdef INSTRUM_BREAK
define break INSTRUM_BREAK
#endif

instrum_uut.h
#define INSTRUM_BREAK \
 if((instrum_break(__FILE__,__LINE__,__FUNCTION__), \
 instrum_false)); else break

The purpose of the function instrum_break is merely to announce the execution of
the corresponding break statement.

The explanation of this scheme exactly follows that of default, and is based on the
observation that

break

in any context is functionally equivalent to

if(falseval) ; else break

It should be noted that instrumenting the break and continue statements adds
nothing to code coverage analysis: each is the last executable statement in a conditional
branch (or you have dead code which your compiler – or at least your Lint – will tell you
about). So instrumenting the condition evaluation (and, for a break in a switch, the
corresponding case) provides all the information needed. The same argument applies to
return and goto statements.

That said, your coding policy may prohibit using goto, and maybe, even continue. In
this case, you may want to instrument them to make the test case fail.

Still, all of continue, goto, return can be instrumented using the same scheme as
break. Note though that instrumenting the return has a little peculiarity: copying the
break instrumentation one to one will have the apparent effect in an instrumented
function of an execution path without a return. This will (or at least could) elicit the
compiler diagnostic. To correct this, use an endless loop in the false path, like

#define INSTRUM_RETURN \
 if((instrum_return(__FILE__,__LINE__,__FUNCTION__), \
 instrum_false)) {for(;;);} else return

Putting it all together

The framework
A reasonable framework can be based on the notion of a test set – a collection of tests
covering one unit. A test in the set consists of:

 Description
 Acceptance criteria
 Test setup code (optional)
 A number of test cases
 Test cleanup code (optional)

A test case consists of:
 Description (optional)
 Parameters (optional)
 The number of repetitions
 Test case execution code (which actually exercises a function you’re testing)

I shall not, of course, insult your intelligence by elaborating on how to model this
framework in C and how to write the generic code executing a test set. A few pointers are
due here though.

Instrumenting the unit under test
We have put together a magic whereby compiling the UUT with the definition

INSTRUM_HEADER="instrum_uut.h"

on the command automatically instruments the UUT. There can be legitimate cases,
however, where the common instrumentation is not what you want (e.g., as we discussed
in the beginning, instrum_uut.h has
#define INSTRUM_STATIC /*nothing*/
and you want
#define INSTRUM_STATIC extern

The solution is to invent your own instrumentation header instrum_myown.h and
pass it as INSTRUM_HEADER. A preferred way is not to re-do all the work but to include
instrum_uut.h in instrum_myown.h, undefine the inadequate implementation,
and define it in an appropriate fashion, e.g.

#include "instrum_uut.h"

#undef INSTRUM_STATIC
#define INSTRUM_STATIC extern

Stubs calling the original function
Occasionally, you may want a stub for foo() to call the real implementation of foo().
A simple application of this is to announce that foo() was invoked.

This, too, can be done with instrum_myown.h, but this requires that foo() be
defined outside the UUT.

Let’s name the stub differently, e.g. stub_foo() and add the following to
instrum_myown.h:

//fool the UUT by renaming
#define foo stub_foo

//(optional) prototype for foo()
// - turns into prototype for stub_foo
#include "foo.h"

This works provided the header containing the prototype for foo() is guarded

Now you can implement stub_foo() elsewhere as you normally would, and it may
call the original foo().

Producing the test set output
The purpose of the execution of a test set is to generate an output file. All output items
should indicate whether it is produced by harness, instrumentation or a stub, for easier
comprehension. Depending on the setup, the output should always produce either HTML
output or plain-text output.

The (nicely formatted) HTML output can then be used for manual inspection of the
execution results and for deciding whether the test set passed or failed, which is
necessary if some acceptance criteria are manual. The HTML output can be easily
equipped with additional information (date/time, user, unit under test, version etc.) and be
presented to the auditor as part of test documentation.

The plain-text output can be used for regression testing (I optimized the code; does it still
work as before?). It can also be used for post-processing of your choosing so that
additional information can be extracted.

Acceptance criteria
Acceptance criteria should be stated for a test in advance; printing them (see next section)
serves as documentation. They state when you consider a test case passed or failed, and
they can be manual or automatic.

A manual criterion simply describes what is expected to come out of the test case; all
such criteria are considered passed if you accept the test set output file as a reference. An
example of a manual criterion is a notification that a certain function was called, or the
lack of such notification.

An automatic criterion produces the expected output independently (like by a different
algorithm of computations or as pre-tabulated values) and programmatically compares
the result of the test case execution with the expected result. The pass/fail info should be
printed with the test case output and propagate up to test and test set summary result.

Analyzing the output
Plain-text output is of particular interest for test coverage analysis.

Branch coverage
As discussed earlier, if your code consists only of if/else statements, 100% code
coverage is achieved if controlling expressions in all if statements have been both true
and false. Similarly, if your code doesn’t use the switch statement, 100% code
coverage is achieved if controlling expressions in all if, while and for statements
have been both true and false, provided that there is no unreachable (dead) code. If there
is, the compiler (or at least Lint) should inform you about that.

(Note however that if only 99.9% of controlling expressions have been both true and
false, we cannot conclude that the code coverage is 99.9%: it can be less because of a
variety of nested execution paths not covered at all.)

So long as each controlling statement is instrumented and is uniquely identified in the
output, it is a matter of simple post-processing of the output file to prove (or disprove)
that it was true and false at least once during test set execution.

Now let’s add the switch statements to the mix. Assuming that all controlling
expressions in all if, while and for statements had been true and false at least once,
you achieved 100% code coverage if and only if each of the case and default
statements had been hit at least once. (If you have switch statements without a
default, it is considered not a good practice yet it can be dealt with. Still, this case is
more complicated and is omitted here.)

In the output file, instrumented case and default statements that were executed
would announce themselves. To verify that all of them were executed, you can scan the
source of the UUT to extract the case and default statements and match them against
their announcements in the test output; if each of them was announced, you’ve got 100%

code coverage, otherwise, you haven’t. This can be done with a not-so-sophisticated
script whose complexity may depend on whether or not you want to account for nested
switch statements.

If you use goto, coverage analysis immediately falls apart. The remedy is of course not
to use it (and, as described above, instrument goto to fail the test). The claim that
“sometimes it is necessary” is no longer true, given today’s compiler technology. The
logic is,

 You know that goto is ugly but need to use it
 You know that ugly code should be extracted into a smallest encapsulating

function
 This function can be written with goto replaced with a return.
 Let the compiler worry about optimization

Condition-type coverage
“Condition” in this context means an atomic Boolean expression in a compound Boolean
“decision” (i.e. branch) expression in if, while, do/while and for. The following
models of coverage are commonly used:

 Condition coverage: each condition has been true and false at least once
 Condition/Decision (CD) coverage – a union of condition and branch coverage
 Much touted Modified Condition/Decision (MC/DC) coverage – CD coverage

where each condition is shown to affect decision independently
o If the (atomic) conditions are not independent, you won’t get MC/DC

coverage.
o But you can get away with Recursive MC/DC (below)

Recursive MC/DC
I’d like to introduce a model of coverage, Recursive MC/DC, which is a variation on the
MC/DC theme but doesn’t constrain the conditions so heavily.

 “Decision” is considered to be a chain of perhaps compound conditions linked
with logical OR or logical AND.

 Conditions comprising the decision are treated as atomic for the purpose of
MC/DC coverage of the Decision

 Any compound condition is (recursively) treated as a decision whose MC/DC
coverage is sought while treating the constituent conditions as atomic

Support of Recursive MC/DC coverage analysis
With the help of coding standard, it is possible to instrument the code to produce
sufficient output for Recursive MC/DC coverage analysis.

To do so, first let’s use and and or instead of && and || respectively, with the purpose
of redefining of and and or. This is built into C++; for C, we need to include the
standard header iso646.h.

Second, let’s enclose operands of and and or in parentheses. E.g. instead of writing

a || b && c>5

let’s write

(a) or ((b) and (c>5))

Some coding standards, such as based on MISRA, require about that much.

Now we can put in instrum_uut.h: something like that:

#ifdef __cplusplus
#define INSTRUM_AND(e) \
 and instrum_and(#e, (e)!=0, __LINE__)
#else
#define INSTRUM_AND(e) \
 && instrum_and(#e, (e)!=0, __LINE__)
#endif

extern instrum_and(const char *cond_name,
 int condition,
 int line);
As usual, instrum_and must announce and return the value of the second argument
(condition). And, of course, we do a similar definitions for or.

Now, in instrum.h, we can put un-defining of what we intend to redefine:
#ifndef __cplusplus
include <iso646.h>
ifdef INSTRUM_AND
undef and
endif
ifdef INSTRUM_OR
undef or
endif
#endif

and put redefinitions in place:

ifdef INSTRUM_AND
define and(e) INSTRUM_END(e)
endif

and similarly for or.

Now, consider by the way of example, executing

if((a) or (b) or (c))
where a, b and c are logical expressions.
In execution of instrumented code (where if and or are instrumented!),

 (a) or (b) or (c) is evaluated
 if is announced as true or false (Decision)

In the first step:
If (a) was true, or(b) is not evaluated and not announced
If (a) was false, or(b) is evaluated and announced as true or false, in which latter case
or(c) is evaluated and announced.
You get coverage w.r.t. a, b and c if you have test cases where

 or(b) was not announced
 or(b) was announced true
 or(b) was announced false, and

o or(c) was announced false
o or(c) was announced true

Of course, “short-circuiting” behavior of logical OR allows the implementation of or to
announce only true. Similar (dual) holds for and.

Recursive application of this logic to the constituents of the compound conditions
demonstrates that we have enough instrumentation to analyze Recursive MC/DC
coverage.

Limitations of the approach
The instrumentation techniques for code coverage analysis are not bullet-proof: they
require that an announcement of a statement uniquely identifies it. A simple example of
where it is not the case is a construct like
if(++x) a; else if(++x) ...
where it is not easy to come up with instrumentation of if which would ensure a unique
identification of each if statement.

Normally, these cases can be addressed by the coding policy. E.g., MISRA wants a block
to follow an if and a coding style usually wants a newline to precede or to follow an
opening curly brace.

There are rare cases though where nested blocks with ifs and loop and switch
constructs comprise a macro definition, and occasionally such a macro has merits. When
such a macro is expanded, all instrumentation functions will get the same __FILE__,
__LINE__, and __FUNCTION__ values, so unique identification may be tricky.

Secondly, there is no transparent way to instrument the ternary operator, which we
conveniently ignored previously. For instance,
if(x) {y=u;} else {y=v;}
has the same meaning and result as

y=(x)?u:v;
The former case can be instrumented and analyzed whereas the latter cannot. A
workaround lies in the coding policy: One can require using the ternary operator in all
non-constant expressions with the ISTRUE macro (discussed with the for
instrumentation), like so:
y=ISTRUE(x)?u:v;

Turning limitations into opportunities
All the limitations we have encountered, except the use of goto, whether fundamental
(as with catch) or aesthetic yet error-prone (as with case), can be remedied fairly
easily with automatic conversion of the unit under test into an instrumented source
subject to actual test execution.
Such conversion requires a fairly basic parser of the language and remains independent of
the peculiarities of your compiler and/or CPU.

This direction may be well worth pursuing provided there is sufficient interest.

Remarks on abnormal execution paths
So far, we’ve been discussing the normal control flow.

The C language allows only one exceptional control flow mechanism, namely,
setjmp/longjmp. There is nothing special to be done to account for it since it appears
as normal control flow based on the return value of setjmp.

The try/throw/catch exception mechanism of C++ is a much harder to deal with. We
need to analyze whether each catch statement had been hit during the test set execution.
It is tempting to do the same trick we used (effectively) for the for statement
instrumentation:
#define catch(a) catch(a) if(instrum_catch()) {} else
Unfortunately, this won’t even compile because catch() requires a compound
statement to follow. At this point I don’t know of a way of instrumenting catch by
redefining the keyword.

Evaluating the commercial test automation tools
Now that you have an idea of what test automation you can get for free straight out of
your compiler, the first question is, how much more functionality you get from the tool
XYZ and whether it’s worth the money – and the learning.

The next question is about usability of the tool XYZ, of course provided that it supports
your compiler and your CPU. For instance, does it work smoothly with your version
control system? (I know of at least one tool that doesn’t like read-only files.) Is test report
independent of the machine on which the test was executed? (Some tools annoyingly
insist on absolute paths.) How easy is it to bring in your own test case in the framework
generated by the tool? (Recall the gullibility example.)

Since the test execution usually takes some time, dependencies management in the tool
are important. Does it know to rebuild and rerun the test if a source file of the unit
changed? A header file on which the source depends? A stub?

Oh, and then of course there are bugs and your license reads “NO WARRANTY”. The
problem, and a conceptual problem at that, is that a bug may have catastrophic effect, e.g.
if the tool says you have 100% coverage whereas you are nowhere near. (I have seen this
with my own eyes.) Even if you discover a bad bug and report it to the vendor, you
remain hostage of their release schedule.

If you are satisfied with the answers your prospective vendor has to offer, go for it.
Otherwise, you may find the techniques outlined in this paper useful. To get started with
the do-it-yourself approach, you can download Maestra – a free reference implementation
from http://www.macroexpressions.com/dl/maestra.zip, or visit the home page
http://www.macroexpressions.com/maestra.html.

A note on free unit testing frameworks
There are at least two applicable testing frameworks that are open-source and free of
charge (CUnit and CppUnit; the latter can be adapted to testing C code). They deservedly
gained a fair amount of acceptance; however they share some limitations:

 Dependence on dynamic memory management
 Need in target platform and compiler adaptation
 Tight integration of runtime test management and test result output
 Most importantly, lack of means of code coverage analysis

The first three attributes may pose problems in resource-constrained embedded
environments. The last one is a problem in safety-related product development.

A conceptually simpler and more powerful way of organizing unit testing is
 Configuring test sets statically (at build time) to scale to the available computing

resources
 Running a unit test is to produce an output file (essentially, an execution log) that

lends itself to post-processing on a host platform.

Such decoupling is what (some of) those expensive tools aim to do. It may be important
if e.g. test output is sent via serial interface and captured on a host machine. For instance,
the Maestra reference implementation uses printf to output readable text, but it
doesn’t have to be so: you can output tokens of any sort (even binary) to reduce the raw
output size, and then post-process it into a readable form.

About the author
Ark Khasin, PhD, is with MacroExpressions (http://www.macroexpressions.com). He can
be contacted at akhasin@macroexpressions.com.

http://www.macroexpressions.com/dl/maestra.zip
http://www.macroexpressions.com/maestra.html
http://www.macroexpressions.com/
mailto:akhasin@macroexpressions.com

	Unit testing requirements
	The unit testing troika
	Harness
	Stubs
	Instrumentation

	C code instrumentation
	Instrumenting the
	statements
	Toward code coverage analysis
	Instrumenting the
	statements
	Instrumenting the
	statements
	Instrumenting the
	statements
	Instrumenting the
	statements: a little help from a coding style needed
	Instrumenting the
	statement
	Instrumenting the break statements and others

	Putting it all together
	The framework
	Instrumenting the unit under test
	Stubs calling the original function

	Producing the test set output
	Acceptance criteria
	Analyzing the output
	Branch coverage
	Condition-type coverage
	Recursive MC/DC
	Support of Recursive MC/DC coverage analysis

	Limitations of the approach
	Turning limitations into opportunities

	Remarks on abnormal execution paths
	Evaluating the commercial test automation tools
	A note on free unit testing frameworks
	About the author

