

 ESC Boston 2008 Class #443

Page 1 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

By Ark Khasin, MacroExpressions
akhasin@macroexpressions.com

Doing C/C++ Unit Testing on a Shoestring

 ESC Boston 2008 Class #443

Page 2 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Purpose of the class
 To help you make rational decision in selecting your testing system
 To propose a novel approach to code instrumentation

Outline of the class
 A broad look at commercial and free test automation tools
 To propose a framework for unit testing
 To see how much test automation can be done with it for free

o To discuss limitations of the proposed method
o To see what a coding style / coding standard can support

 ESC Boston 2008 Class #443

Page 3 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

The purpose of unit testing
 Demonstrate correctness of the code to yourself and to the auditor

o your tests passed, and
o your tests sufficiently cover the function’s implementation

 Ensure your code is still correct after modifications (Regression testing)
 Even a “proven in use” function may fail on a previously masked execution path

o my bug in a string output function
o “Which brings us to tonight’s word:” Coverage

Common Types of Coverage
“Condition” means an atomic Boolean expression in a compound Boolean “decision”
expression in if, while, do/while and for.

 Branch coverage (a.k.a. decision coverage)
 Condition coverage: each condition has been true and false at least once
 Condition/Decision (CD) coverage – a union of condition and branch coverage
 Much touted Modified Condition/Decision (MC/DC) coverage – CD coverage where

each condition is shown to affect decision independently
o If the (atomic) conditions are not independent, you won’t get MC/DC coverage.
o But you can get away with Recursive MC/DC (below)

 Boundary conditions coverage

 ESC Boston 2008 Class #443

Page 4 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Process of Unit Testing
 Define a test set for the UUT

o Add, Remove or Modify test cases
o Define acceptance criteria for each test

 Execute the tests
o With the sole purpose to produce test results

 Evaluate test results
o And fix the code as needed and repeat

 Evaluate achieved coverage
o Add test cases as needed and repeat

To do the execution step,
 Some functions may need to be “stubbed out” to replace the real implementations,

which
o May not be yet available
o May not be essential to the test

To do the evaluation steps,
 The UUT must be “instrumented” to produce more output than normally available
 Instrumentation puts a limit on

o what tests you can design, and
o what test coverage you can achieve

 ESC Boston 2008 Class #443

Page 5 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Relation between test execution and evaluating results
A non-instrumented test output

 CT-scan test output is analyzed by a qualified doctor
 Software test output is analyzed by a qualified software engineer aided by

appropriate analysis software
Add Instrumentation

 Produces more output than normally visible
 Contrast CT-scan requires “instrumenting” your body’s organs to produce more

output without changing their essential behaviors
o Or, at least, such is the belief

 Software testing requires instrumenting your code to produce more output without
changing its essential behavior
o Or, at least, such is the belief

 Verbose execution trace
o To support regression testing
o To support Test Output Analysis

 ESC Boston 2008 Class #443

Page 6 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Let’s take a closer look at the process with an eye on possible automation.

Test cases
 Automation tools may suggest certain test cases

o Primarily, targeted at specific models of test coverage
 Don’t expect automation tools to understand your design

o A fair amount of test cases must be created manually
o Example:

 ESC Boston 2008 Class #443

Page 7 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Stubs
 You have to decide what to stub

o stubbing out strcpy() might not be a smart idea
o stubbing out a function to which creating some side effects is usually desirable

 Automation tools aren’t smart enough
o may offer to stub all or none, or
o leave you with DIY which is usually the best

Harness (execution environment)
 In a good DIY design, you implement it once
 Expect it fully automated by a vendor

Instrumentation
 Can be hardware- and/or software-based
 For unit testing, purely software instrumentation is normally used

o Can and must be automatic for repeatability and error elimination
o Bugs in instrumentation are typically catastrophic (may lead to incorrect test

result evaluation)

 ESC Boston 2008 Class #443

Page 8 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Free unit testing frameworks
 Free
 Open-source
 Provide harness
 Manual creation of test cases
 No instrumentation
 No proof of coverage
 Lump test execution with test management (large footprint)
 Require compiler/CPU adaptation
 Depend on dynamic memory management

Commercial unit testing frameworks
 Expensive
 Proprietary code
 Provide harness
 Suggest test cases
 Provide instrumentation based on parsing the code
 Provide coverage analysis
 Split test execution, analysis and management
 Require compiler/CPU adaptation
 Generally produce small footprint
 Bugs seen in instrumentation or coverage, which is catastrophic

 ESC Boston 2008 Class #443

Page 9 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Proposed unit testing framework
 DIY with free reference implementation
 Open Source reference implementation
 Manual creation of test cases
 Focused on instrumentation
 Automatically adapts to your compiler/CPU

o Based on abusing C/C++ preprocessor
 Has limitations

o Some may be addressed by a company coding standard
 E.g. based on MISRA C

 Opens an opportunity for compiler-independent instrumentation
o Is anyone interested?

On to the Unit Test Framework

 ESC Boston 2008 Class #443

Page 10 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

A taste of code instrumentation
 Goal: gain access to static variables in UUT
 Begin abusing the preprocessor:
#define static extern

 Turns uninitialized definitions of internal linkage into declarations of external linkage
 Turns initialized definitions of internal linkage into definitions of external linkage

o Therefore, breaks initialized static in block scope
 which may be a good thing

 Doesn’t work with C/C++ block name resolution
o but it should be proscribed by coding standard in a safety-related environment

 Harness requirements:
o Need definitions for new declarations
static T x; in the UUT requires
T x; in the harness

o Need declarations for new definitions
static T x = X; in the UUT requires
extern T x; in the harness

 ESC Boston 2008 Class #443

Page 11 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Where to put this abuse?
 A place readily available when you need it
 A place that guarantees non-interference with the normal build
 Solution: invent a header "instrum.h" as a general-purpose wrapper and

"instrum_uut.h" for instrumenting your uut.c as follows:

instrum.h

#ifdef INSTRUM_HEADER

 #define INSTRUM_STATIC

/*request abuse of other
keywords*/
............

#include INSTRUM_HEADER
#endif /*INSTRUM_HEADER*/

instrum_uut.h
//prototypes
#include "instrum_implem.h"
//abuse of static
#ifdef INSTRUM_STATIC
define static extern
#endif /*INSTRUM_STATIC*/

//abuse of other keywords
............

 ESC Boston 2008 Class #443

Page 12 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Technique 1: If you have a common header, say, project.h

project.h (original)

//common goodies
#include <stddef.h>
............

//common project definitions
#define FOO 1234567
............

project.h (updated)

//common goodies
#include <stddef.h>
............

//Magic incantation
#include "instrum.h"

//common project
definitions
#define FOO 1234567
............

 ESC Boston 2008 Class #443

Page 13 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Technique 2: Include the UUT in the harness file
 Additionally, create an “un-instrumentation” header uninstrum.h to undefine some

of the abuses created for instrumentation, e.g.:
#undef static

 Begin your harness with
#include "instrum.h"
#include "uut.c"
#include "uninstrum.h" //remove instrumentation

 Note: instrumenting the static keyword is unnecessary for this technique
o Except if you want to break the block-scope static.

For either technique,
 To get instrumented compilation,

o Add definition (usually, -D flag) to the compiler command line:
 INSTRUM_HEADER="instrum_uut.h"

o Don’t forget to escape quotes according to your shell

 ESC Boston 2008 Class #443

Page 14 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

A note on stubs
 Occasionally, you want a stub for foo() to call the real implementation of foo()
 Can be done with a special version of instrum_uut.h, say, instrum_myown.h

o So, pass to the compiler
 INSTRUM_HEADER="instrum_myown.h"

o Requires that foo() be defined outside the UUT
 Name the stub differently, e.g. stub_foo()

 Implement stub_foo() elsewhere as you normally would

instrum_myown.h

//common instrumentation
#include "instrum_uut.h"

//fool the UUT by renaming
#define foo stub_foo

//(optional) prototype for foo()
// - turns into prototype for stub_foo
#include "foo.h"

 ESC Boston 2008 Class #443

Page 15 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

C Code Instrumentation
if keyword

 Put in instrum.h
#define INSTRUM_IF

 Add to instrum_uut.h
#ifdef INSTRUM_IF
#define if(condition) \
if(instrum_if(#condition, (condition)!=0, \
__FILE__, __LINE__, __FUNCTION__))

#endif
 Add to instrum_implem.h
extern int instrum_if(const char *condition_name,
 int condition,
 const char *filename,
 int line,
 const char *function_name);

 ESC Boston 2008 Class #443

Page 16 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

if keyword (cont’d)

 Add implementation of instrum_if, e.g.
int instrum_if(const char *condition_name,
 int condition,
 const char *filename,
 int line,
 const char *function_name)
{
 printf("Condition %s in funtion %s"
 " (file %s line %d) is %s\n",
 condition_name, function_name,
 filename, line, (condition)?"true":"false");
 return condition;
}

 Note: an implementation of instrum_if must return the value of the parameter
condition

 Note: a useful implementation of instrum_if is more involved because
instrumentation of other keywords depend on if

 ESC Boston 2008 Class #443

Page 17 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

if keyword (cont’d)
Code coverage support

 If control flow is implemented with if/else only, 100% branch coverage is achieved
if every if had its condition at least once true and at least once false

 Can be discovered by parsing the instrumented test output provided every if can be
uniquely identified

Limitations
 Constructs like
if(++x) {a}; if(++x) {b}
make it hard to implement uniquely identifiable if instrumentation

 In most cases, can be addressed by a Coding Policy
 Can be a problem if a result of a macro expansion

o But should those macros be considered opaque and tested separately?!

 ESC Boston 2008 Class #443

Page 18 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

while keyword
 Can follow the pattern of simplistic instrumentation of if
 Optional special treatment of idioms while(0) and while(1), e.g.
int instrum_while(const char *condition_name,
 int condition,
 const char *filename,
 int line,
 const char *function_name)
{
 if(strcmp(condition_name, "0") != 0 &&

 strcmp(condition_name, "1") != 0) {
 printf("Condition %s in funtion %s"
 " (file %s line %d) is %s\n",
 condition_name, function_name,
 filename, line, (condition)?"true":"false");
 }
 return condition;
}
 Same Coverage and Limitations considerations apply

 ESC Boston 2008 Class #443

Page 19 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

switch keyword
 Can follow the pattern of simplistic instrumentation of if
 Useful for regression testing but by itself little help with coverage
 Coverage proof requires instrumenting case and default (next)

default keyword
 Can follow the pattern of instrumentation of static
 Based on the observation that
default:
is equivalent to
default: if(some_true_value) a_unique_label:

 For some_true_value, we take (the return value of) the function
instrum_default which must return a non-zero

 For a_unique_label we can take a concatenation of instrum_label and
expanded macro __LINE__

 ESC Boston 2008 Class #443

Page 20 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

default keyword (cont’d)

 Here is a working definition
#define default \
 default: \
 if(instrum_default(__FILE__,__LINE__,__FUNCTION__)) \
 CAT(instrum_label, __LINE__)
where CAT concatenates two expanded tokens:
#define CAT1(a,b) a ## b
#define CAT(a,b) CAT1(a,b)

 Note: the if comes in already instrumented; we must suppress announcements
from it. That’s why the if instrumentation is more involved.

Coverage support
 A default statement was covered if it was announced (by instrum_default)

Limitations
 One default in a line of code

 ESC Boston 2008 Class #443

Page 21 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

case keyword
 Instrumentation requires parenthesizing the label: Instead of
case MYCASE:
write
case (MYCASE):

 Can be required by a Coding Standard but is not common and can be considered
intrusive

 Implementation can follow the pattern of default instrumentation

Coverage support
 If a case was announced (by instrum_case) it was covered

Limitations
 One instrumented case in a line of code
 A numeric label must be parenthesized (or a case won’t be instrumented)

 ESC Boston 2008 Class #443

Page 22 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Difficult cases
 Control expression of a for loop
 The ternary operator ?:
 Bizarre coding practices, e.g. !a || b instead of if(a) b;

o May have merits in macro definitions
 Solution possible but is intrusive:

o ISTRUE macro
 in instrum.h, a definition for normal build:
#ifndef ISTRUE
#define ISTRUE(e) (e)
#endif

 in instrum_uut.h
#define ISTRUE(e) \
instrum_istrue(#e,(e),__FILE__,__LINE__,__FUNCTION__)
with appropriate definition of instrum_istrue.

 Require that non-empty control expressions of for loops and non-
constant ternary operators be wrapped in ISTRUE

 ESC Boston 2008 Class #443

Page 23 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Difficult cases (cont’d)
 Condition coverage support (cannot redefine || or &&)

o Use and for &&, or for || etc.
 Built into C++; C requires
#include <iso646.h>

 Parenthesize logical expressions (not a bad practice)
 #undef and redefine the logical operators in instrum_uut.h, e.g.
#define and(e) \
&& instrum_and(#e, (e)!=0, __LINE__)
where instrum_and returns the value of the second parameter
(and similarly for other operations)

 ESC Boston 2008 Class #443

Page 24 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Other keywords
 break, continue, goto, return
 Any keyword among them is functionally equivalent to a passage
if(false_value) {exit(1);} else keyword

 Following the common pattern,
#define keyword \

 if((instrum_keyword(__FILE__,__LINE__,__FUNCTION__), \
 instrum_false)) {for(;;);} else keyword

Abnormal control flow
 No special instrumentation needed for setjmp/longjmp
 (C++ only) Probably try/throw/catch cannot be instrumented in a useful way

o Except that throw can be instrumented like return.

 ESC Boston 2008 Class #443

Page 25 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Coverage Analysis
Branch Coverage

 If all program flow is controlled by if/else,
o 100% coverage is achieved if every (uniquely identified) if statement

announced its condition to be true and to false at least once each
 If the ternary operator is added to control flow,

o 100% coverage is achieved if, in addition, it announces (via ISTRUE) its control
expression to be true and to false at least once each
 You get to decide which ternary operator is considered affecting program

flow
 If do/while and/or while are added to program flow control,

o 100% coverage is achieved if, in addition, all while conditions are announced
true and false at least once each
 Provided you took care of while-related idioms

 If for is added to program flow control,
o 100% coverage is achieved if, in addition, it announces (via ISTRUE) its control

expression to be true and to false at least once each
 And nothing interesting about for(expr1; ; expr3)
 You are responsible for wrapping the control expression in ISTRUE

 ESC Boston 2008 Class #443

Page 26 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Branch Coverage (cont’d)

 If switch/case/default is added to program flow control,
o 100% coverage is achieved if, in addition,

 for each announced switch, each case and default is at least once
announced as the first case, or for a switch without default, at least
once there was no announcement

 You are responsible for enclosing case labels in parentheses
 If goto is added to program flow control,

o The scheme falls apart. Do no use goto.
 Instrument goto to fail the test

 ESC Boston 2008 Class #443

Page 27 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Condition Coverage
 MC/DC for logical terms connected with only and or only or is easily supported.

Example:
if((a) or (b))

where a and b are logical expressions.
In execution of instrumented code (of if and or are instrumented!),

 (a) or (b) is evaluated
 if is announced as true or false (Decision)

In the first step:
If (a) was true, or(b) is not evaluated and not announced
If (a) was false, or(b) is evaluated and announced as true or false
You get CD coverage w.r.t. a and b if you have test cases where

 or(b) was not announced
 or(b) was announced false
 or(b) was announced true

 ESC Boston 2008 Class #443

Page 28 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Recursive MC/DC
 If a and/or b are in turn compound expressions, use this scheme recursively.
 Circumvents code constraint of MC/DC

Example: a is (c) and (d).
Assume a satisfied MC/DC
When (a) is evaluated, (c) is evaluated first

 if c is false, and(d) is not evaluated and evaluation of d (and a) is not announced
 if c is true, and(d) is evaluated and is announced as true or false

 ESC Boston 2008 Class #443

Page 29 of 29

C/C++ Unit Testing on a Shoestring

©
2

0
0

8
 M

a
cr

o
E

xp
re

ss
io

n
s

ht
tp

:/
/w

w
w

.m
a

cr
o

ex
p

re
ss

io
ns

.c
om

Ark Khasin

Putting it all together
Test Execution Framework

Test Harness
Standard DYI code iterating over the table of

Description
Acceptance criteria
Test setup code (optional)
A number of test cases
Test cleanup code (optional)

Test case
Description (optional)
Parameters (optional)
The number of repetitions
Test case execution code (which actually exercises the function you’re testing)

Stubs
Entirely DYI

Instrumentation
Based on instrum_uut.h
May be replaced with your UUT-specific instrum_myown.h via INSTRUM_HEADER macro

Reference implementation
http://www.macroexpressions.com/maestra.html

http://www.macroexpressions.com/maestra.html

	Purpose of the class
	Outline of the class
	Thepurpose of unit testing
	Common Types of Coverage
	Processof Unit Testing
	Relation between test execution and evaluating results
	A non-instrumented test output
	Add Instrumentation

	Test cases
	Stubs
	Harness (execution environment)
	Instrumentation
	Free unit testing frameworks
	Commercial unit testing frameworks
	Proposed unit testing framework
	On to the Unit Test Framework
	A taste ofcode instrumentation
	Where to put this abuse?
	Technique 1: If you have a common header, say,
	Technique 2: Include the UUT in the harness file
	For either technique,

	A note on stubs
	C Code Instrumentation
	keyword
	keyword (cont’d)
	keyword (cont’d)
	Code coverage support
	Limitations

	keyword
	keyword
	keyword
	keyword (cont’d)
	Coverage support
	Limitations

	keyword
	Coverage support
	Limitations

	Difficult cases
	Difficult cases (cont’d)
	Otherkeywords
	Abnormal control flow

	Coverage AnalysisBranch Coverage
	BranchCoverage (cont’d)
	Condition Coverage
	Recursive MC/DC
	Putting it all togetherTest Execution Framework
	Test Harness
	Test case
	Stubs
	Instrumentation

	Reference implementation

