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Introduction
Managing and maintaining software projects is a difficult job by itself but it becomes much more difficult when you
have a project with multiple configurations. Consistent reuse of tried-and-true code becomes a necessity, if for no other
reason then because of the limited resources that can be dedicated to development and, most importantly, to debugging
of new code.

Code reuse, however, seldom comes for free. This may have an adverse effect on the other end of the embedded
project: the always-scarce RAM, ROM and execution time. So much the more interesting is to explore cases where
well maintainable code can be produced with no runtime penalty whatsoever. In this presentation, we focus on an
important special case where this happens to be possible: constant data tables.

Namely, we turn our attention to the tables (arrays) of data that are:
♦ constant within a given build of the project but
♦ changing during development cycle
♦ changing among project’s twin variants
♦ changing from year to year in a product line environment

Here are a few examples of such “varying constant”  tables:
♦ tabulated functions (common thing among ROMable systems)
♦ recognized communications datagrams (a.k.a. “message lists” )
♦ lookup tables of all sorts
♦ custom keypad input translation tables

Applications where such tables can appear are many. Almost any embedded application that is mass-produced and/or
belongs to a “product line”  can serve as an example: consumer electronics, automotive controllers, home appliances,
medical instruments, to name a few.

The plan of this presentation is as follows.

We will define requirements for constant tables’  reusability and maintainability and then consider an example of a
simple function that needs to be tabulated. On this example, we will see what minimum features the programming
language must have to meet the requirements we will have adopted. We will conclude with dismay that high-level
languages do not serve the purpose, and will resort to a generic macroassembler language in a machine-independent
fashion, to which we will try to give a common ground description. Then we will demonstrate a solution to the problem
of tabulating a function and discuss generalizations of the problem. Our next example will be sparse tables. We will set
the maintainability goals and show the techniques, which make those goals achievable. The next point of interest will
be a lookup table for a constant table of data objects. The main maintainability goal here will be generating the lookup
tables automatically at compile time. Achieving this bold goal will produce code requiring no maintenance at all; this is
the main result of the presentation. Then we will turn our attention to ROM-saving techniques for automatically
generated sparse lookup tables. The full solution is too tedious to be presented here but we will present a sketch of the
implementation. Finally, we will go back to high-level languages (and weaker assemblers alike) and discuss an option
of using Unified macro language (Unimal), which provides language-independent macro extensions sufficient for
solving the problems we will have discussed.

Reuse and maintainability requirements
High cost of a software bug and time-to-market considerations dictate emphasis on code reuse and maintainability. In
our setting of multiple similar projects, this means, in the first place, that the code must be easy-to-configure by a
project engineer who is not necessarily an expert in inner workings of any particular component of the code.
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Parameterized projects
An almost obvious solution is to treat an individual project as a member of a parameterized family of projects, whether
actual or envisioned. In this paradigm, a real project (the one generating executable code) is an instance of an abstract
project (equipped with varying parameters) for a fixed set of the parameters.

Whether the parameters are “discrete switches”  for conditional compilation or “continuous”  calibration parameters, this
approach has the following benefits:
♦ Doing all the development for an abstract project promotes code reuse
♦ A concrete project is instantiated by “simply”  fixing the parameter set.
♦ New and unforeseen variations are added incrementally thus making the whole thing manageable.

This is just fine. The problem is, however, that instantiation can be far from trivial, even if there are only scalar
parameters. The example below illustrates the problem. (In fact, this sort of challenges initiated my interest in constant
tables.)

Example: Tabulating a function
Consider a function that is rather hard to calculate in real time. For our example, let’s take

myf unc( x)  = 10000* x* / ( 1+x2) ,  0≤≤≤≤x ≤≤≤≤1,

with integer precision. A common way of coping with this situation is to tabulate such a function.

Assume that the only parameter varying among projects is the number N+1 of equidistant points of interpolation. I.e.,
we want to create an array Myf unc  of N+1 elements, whose t-th element is

10000* ( t * N/ ( t * t +N* N) ) ,  t =0, …, N.

The Myf unc  table consists of constant elements once N is fixed. This Myfunc array must be created automatically,
otherwise it is very difficult and error-prone to maintain. The choices are:
♦ Calculate the array values at runtime, during system initialization
♦ Calculate the array values at compile time.

Comparing runtime vs. compile time (static) initialization is rather straightforward:
♦ Runtime initialization requires to link in some math support, thus increasing the code size (=ROM)
♦ Runtime initialization slows down system initialization
♦ With runtime initialization the table ends up being in RAM even though it is constant and logically belongs to less

scarce ROM.

Thus, it is not hard to arrive at the following conclusion: runtime initialization is uniformly worse than compile-time
initialization, so the goal should be static initialization of the table.

The problem with achieving this goal is the lack of appropriate programming tools. We will see shortly that high-level
languages are not suited for this static initialization task. Macroassemblers are not designed with this task in mind
either. However they possess necessary language features, which in an unusual combination can produce the solution
we are seeking.

Limitations of high-level languages
The goal in our unsophisticated example is therefore to find a compile-time equivalent of the functionality of the C
statement

f or  ( t =0;  t <=N;  t ++)  Myf unc[ t ]  = 10000* ( t * N/ ( t * t +N* N) ) ;

To achieve this, static initialization of Myf unc  table requires a source code sprinkled with compiler directives
controlling the compiler in some special ways. Namely,
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• We need some kind of a repetition mechanism, or loop, to force the compiler to re-scan a piece of source code
repeatedly

• We need a way to arrange an incrementing compile-time counter (t) to calculate the values of the table elements.

The availability of these facilities depends solely on the programming language used. I am not aware of any HLL with
any of these facilities, let alone all of them. More complex problems may require additional features missing in high-
level languages, such as calculated names.

With the assumption that my perception is correct and that the HLLs indeed do not serve the cause of static (compile-
time) initialization, we are left with two choices:
1. Use an add-on utility as a helper in static initialization or
2. Write static initialization in a macroassembler.

We will briefly discuss the first option in the end of this presentation; the center of our interest will be the second
option.

Hypothetical Macro Assembler
Let’s list the language features commonly available in various macro assemblers but for inexplicable reasons absent
from high-level languages.

Assemblers are, of course, machine-dependent, but their macro facilities don’ t have to be. Still, there are syntactical
differences among assemblers from different vendors even for the same machine. The truth appears to be that a macro
language built in an Assembler is for the most part a thing independent of the target processor. Thus, the macro
language is essentially a high-level language not usually recognized as such. The main difficulty with macroassemblers
is lack of any standards of macro facilities.

To concentrate on the general techniques rather than peculiarities, we will use a hypothetical macro assembler
(Hypoassembler, for short) whose macro (and related) syntax is described below.

Macro Definitions and Invocations
Macro is a language construct that allows defining a parameterized piece of source code (macro definition) and
inserting this piece of code with parameters resolved to their actual values anywhere in the source code (macro
invocation). The process and the result of substitution of a macro invocation with the appropriately resolved macro
definition are often called macro expansion.

Most people would say that the difference between a macro and a function (or subroutine) is that a function call passes
actual parameters and control to a separate piece of code, whereas macro invocation produces the necessary code on
the spot by cloning its definition. While it is true, there is more to it, while obvious, often underestimated: Macro
expansions are produced at compile (read: assembly) time, and function calls are made in run time. Therefore,
functions are completely useless in defining constant (ROMable) items, because they (constants) must be resolved at
compile time. Macros, on the other hand, can be used not only for merely defining constants, but also for giving those
definitions that glossy look that is commonly expected from high-level languages.

Macro definitions in Hypoassembler have commonly accepted syntax

<macr o_name> MACRO <comma_separ at ed_l i s t _of _f or mal _par amet er s>
<macr o body>
ENDM

Macro is invoked by its name with comma-separated list of actual parameters. For our purposes, an actual parameter
can be an arithmetic expression (calculated for us by assembler) or an alphanumeric string. Hypoassembler translates
macro call by replacing it with the macro body with formal parameters replaced by actual parameters.
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Name concatenation and early evaluation
Symbolic names (identifiers) inside the macro body can be a concatenation of different parts. The ampersand ‘&’
serves as concatenation operator. For instance, if macro body contains an identifier x&ar g1&ar g2 in it, and if actual
parameter ar g1 is 123 and ar g2 is abc , then the name in the macro expansion will be x123abc . However, if
ar g1 were 120+3, then the name’s expansion would be x120+3abc , which is syntactically incorrect and is not
what’s normally intended.

To handle this problem, there is a less common feature, so-called “early evaluation” ; we will note each case of its use.
If an actual parameter is an expression, it can be prefixed by a ‘%’  and then the Hypoassembler evaluates it and passes
a numeric (say, decimal) result to the macro instead. In the previous example, if ar g1 were %120+3 then our example
name would correctly expand to x123abc .

Conditional Assembly
Syntax:

IF <expr essi on>
<body>
ENDIF

Hypoassembler evaluates constant <expr essi on>; text between I F and ENDI F lines is discarded or literally
included if the result is zero or non-zero, respectively. This construct can be used within macro definitions. Such macro
definitions produce different macro expansions depending on actual parameters and / or place of invocation.

Repeated scanning of the source code
We can say that IF repeats the <body> zero or one time. The following construct is a generalization:

REPT <expr essi on>
<body>
ENDR

Hypoassembler evaluates <expr essi on> and includes as many copies of <body> in the source file. The net effect
is that <body> is scanned the <expr essi on> number of times. In fact, assembler programmers routinely use this
facility, for instance, to include multiple-line comments: all ASCII text between REPT 0 and ENDR is ignored!

The REPT construct is extremely powerful when combined with conditional assembly (whether folded in macros or
not). The key is that combining assembler directives with conditional assembly in a REPT loop, we can write an
Assembler source file that is at the same time a sophisticated program to control the behavior of the Assembler!

Assignments
The following syntax allows assigning a value of an expression to a symbolic variable:

<name> SET <expr essi on>

A name assigned with SET can be re-assigned (with another SET) .

Allocating memory for constant data
For simplicity, we will assume only one data type good for holding integers and addresses; the directive to allocate it at
the current program counter is DC. Syntax:

DC <expr essi on>
Current value of the program counter (a.k.a. location counter) is available to the programmer as ‘$’ . We can change the
position of the program counter at will using the ORG directive. Syntax:

ORG <expr essi on>
It is the humble ORG that is the heart of the solution. For instance, if I need to place something at offset 17 from the
current location, I don’ t need any placeholders, counters or such. I simply command “ORG $+17” ! Please, email me
about any high-level language capable of this!
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Maintainable implementation of a tabulated function
First implementation
Returning to the example of Myf unc  in Hypoassembler, recall that our task was to find a compile-time equivalent of
the C statement

f or  ( t =0;  t <=N;  t ++)  Myf unc[ t ]  = 10000* ( t * N/ ( t * t +N* N) ) ;
Here it is:

Myf unc:
t SET 0   ; l oop i ni t i al i zat i on

REPT N+1 ; l oop engi ne;  r emember ,  N i s  const ant
DC 10000* N* t / ( N* N+t * t )  ; al l ocat i ng a t abul at ed val ue

t SET t +1 ; i ncr ement  l oop count er
ENDR      ; end of  l oop body

This can be instantiated for any given N. For instance, if N=6, here is a (slightly doctored) output of an actual
Assembler:

Improving maintainability
First, let’s wrap the implementation of the function to be tabulated in a macro:

Second, let’s wrap the generator of the table in a macro

Now, we have a reusable component. E.g., the original myfunc is generated as the table _myf unc_t ab by

FuncTabl e N,  myf unc

       HEX
000000          Myf unc:
000000 0000         DC     10000* N* t / ( N* N+t * t )  ; al l ocat i ng a t abul at ed val ue
  00000001      t    SET     t +1 ; i ncr ement  l oop count er
000001 0655         DC     10000* N* t / ( N* N+t * t )  ; al l ocat i ng a t abul at ed val ue
  00000002      t    SET     t +1 ; i ncr ement  l oop count er
000002 0BB8         DC     10000* N* t / ( N* N+t * t )  ; al l ocat i ng a t abul at ed val ue
  00000003      t    SET     t +1 ; i ncr ement  l oop count er
000003 0FA0         DC     10000* N* t / ( N* N+t * t )  ; al l ocat i ng a t abul at ed val ue
  00000004      t    SET     t +1 ; i ncr ement  l oop count er
000004 1207         DC     10000* N* t / ( N* N+t * t )  ; al l ocat i ng a t abul at ed val ue
  00000005      t    SET     t +1 ; i ncr ement  l oop count er
000005 1336         DC     10000* N* t / ( N* N+t * t )  ; al l ocat i ng a t abul at ed val ue
  00000006      t    SET     t +1 ; i ncr ement  l oop count er
000006 1388         DC     10000* N* t / ( N* N+t * t )  ; al l ocat i ng a t abul at ed val ue
  00000007      t    SET     t +1 ; i ncr ement  l oop count er

myf unc MACRO t ,  Si ze
DC 10000* Si ze* t / ( Si ze* Si ze+t * t )
ENDM

FuncTabl e MACRO Si ze,  Func
_&Func&_t ab:
t SET 0

REPT Si ze+1 ; r emember ,  Si ze i s  const ant
&Func& t ,  Si ze

t SET t +1
ENDR
ENDM
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Discussion
♦ The solution doesn’ t have terrifying look of assembly code
♦ Maintenance is straightforward on two levels:

� The person maintaining the project simply specifies the N, and
� The person maintaining the algorithm component using myfunc function modifies the myfunc macro as needed.

♦ These two persons may or may not be one.

Maintainability of sparse tables
To demonstrate the problem and a solution to it, it is best to follow a small-size example. For the example, let’s take a
sparse table of 32 entries, where significant entries are references to A1…A4:

A1 at offset 9
A2 at offset 11
A3 at offset 24
A4 at offset 27

All other entries are “don’ t care.”

Using NULL or 0 for “don’ t care”  entries, we can write in C something like this:

In straight Hypoassembler, it looks equally bad:

Unreadable, not maintainable and error-prone! It doesn’ t matter how much nice formatting and how many comments
you add – any modification is treacherous.

Inspecting the horrible code above and considering the maintenance tasks that may be needed for such a table, we can
formulate the following maintainability goals:
1. Supply only significant entries of the table. Don’ t care about “don’ t care”  entries.
2. Allow listing significant entries in arbitrary order.

This would reduce maintenance to editing (adding, removing) significant entries.

The additional goal is to save ROM by chopping off leading and trailing “don’ t care”  entries of the table. This must be
done without compromising the maintainability of the resulting implementation.

First implementation in Hypoassembler
The following code meets the first two goals in a crude way:

Tabl e:
ORG Tabl e+11

       DC A2
ORG Tabl e+9

       DC A1
ORG Tabl e+27

       DC A4
ORG Tabl e+24

       DC A3
ORG Tabl e+32 ; posi t i on t he Locat i on Count er  past  t he t abl e

const  ob_t ype *  const  Tabl e[ ]  =
{ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &A1, NULL,
&A2, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, &A3, NULL, NULL, &A4, NULL, NULL, NULL, NULL} ;

Tabl e:
  DC 0, 0, 0, 0, 0, 0, 0, 0, 0
  DC A1, 0, A2, 0, 0, 0, 0, 0, 0
  DC 0, 0, 0, 0, 0, 0, A3, 0, 0, A4, 0, 0, 0, 0
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This implementation lists a significant entry as a pair of lines, one positioning the location and another defining the
entry’s value. The key here is the ORG directive controlling the location counter. Notice that we need to position the
location counter past the actual table.

Cosmetic improvement
For a nicer look, let’s use the following wrapper macros.
The first macro locates a _val ue at _of f set  from the current default table:

Our second macro is a companion to the first one: it defines the default table and locates the beginning of the table:

Using these simple macros, we can rewrite our implementation of the table as follows:

This last implementation not only looks much better, it is also almost portable. Still, we need to position the location
counter past the table. Also, we did not gain any ROM savings yet.

Second implementation
Our second implementation builds upon the first one. To save ROM, we offset the start of the table to overlap with
preceding code or constant data thus taking advantage of leading “don’ t”  care entries. In a similar way, we position the
location counter past the last significant entry of the table, so the trailing “don’ t care”  entries vanish overlapping the
subsequent code or data.

Tabl e:  ORG $- 9
ORG Tabl e+11
       DC A2

ORG Tabl e+9
       DC A1

ORG Tabl e+27
       DC A4

ORG Tabl e+24
       DC A3

ORG Tabl e+27+1 ; posi t i on t he LC past  t he l ast

                      ;  si gni f i cant  ent r y

Reformulating, here is what we did:
1. Overlapped the 9 leading “don’ t care”  entries with preceding code or data. Notice that 9 is the minimum offset of a

significant entry of the table.
2. Overlapped the 4 trailing “don’ t care”  entries with subsequent code or data. Notice that 27 (=(32−1)−4) is the

maximum offset of a significant entry of the table.

Our task is now to make the necessary calculations automatically.

Locat eEl ement  MACRO _of f set ,  _val ue
      ORG __Def aul t Tabl eName + _of f set

DC  _val ue
      ENDM

St ar t Locat eTabl e MACRO _t abl e
_t abl e:
__Def aul t Tabl eName SET _t abl e
                ENDM

St ar t Locat eTabl e Tabl e
Locat eEl ement  11,  A2
Locat eEl ement   9,  A1
Locat eEl ement  27,  A4
Locat eEl ement  24,  A3
ORG Tabl e+32
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Automating the second implementation
So, we need to know in advance:
1. The number of leading “don’ t care”  entries (= min offset of a significant entry)
2. The position of the location counter past the last significant entry (1 greater than max offset of a significant entry)

Therefore, we are targeting two-pass implementation:
Pass 1. Calculate min and max offsets of significant entries
Pass 2. Locate the table.

The following is our target implementation:

Notes:
1. REPT and ENDR statements cannot be portably folded in macros, so they remain exposed.
2. The project engineer can treat new elements of the table definition (shown in larger font) as fixed incantations.
3. The target implementation meets the goals we set: maintainability and ROM savings.

We begin our implementation with simple macros serving as building blocks. The first one is a helper macro
calculating current minimum. The actual argument for Current must be pre-initialized to a large number.

Another necessary macro, Maximum, is similar and is therefore omitted here. The next two macros simply encapsulate
the initialization of the parameters we use (Pr epar eLocat eTabl e) and the positioning of the location counter
(EndLocat eTabl e).

Pr epar eLocat eTabl e
REPT 2
St ar t Locat eTabl e Tabl e
Locat eEl ement  11,  A2
Locat eEl ement   9,  A1
Locat eEl ement  27,  A4
Locat eEl ement  24,  A3
ENDR
EndLocat eTabl e

Mi ni mum MACRO Cur r ent ,  New
 I F New<Cur r ent
Cur r ent SET New
 ENDI F
        ENDM

Pr epar eLocat eTabl e MACRO
__Pass      SET 0
Mi nOf f set SET 10000 ; ver y l ar ge number
MaxOf f set SET 0

       ENDM

EndLocat eTabl e    MACRO
     ORG __Def aul t Tabl eName+MaxOf f set +1

            ENDM
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Now, we are ready to redefine the macros St ar t Locat eTabl e and Locat eEl ement  for our two-pass strategy.
Newly added code is shown in the larger font.

This set of macros completes the implementation of the code we targeted in the beginning of this subsection.

Generating lookup tables automatically
Let’s consider now a table of objects of more or less any nature. Assume that to perform a search on such a table by a
numeric key, we want to supplement it with the corresponding lookup table. The lookup table maps a valid key to the
reference to an object; entries at positions not being valid keys are “don’ t care.”

An immediate observation one can make is that if the table of objects is constant, so is its lookup table, which is
therefore a perfect candidate to go to ROM. Thus, we want to generate it at compile time. Additionally, the lookup
table is not an independent entity: it can be calculated from the table of objects and so its generation can be automated.
Hence our goal: To generate lookup tables for tables of any objects completely automatically, to require no
maintenance at all.

Framework
We assume that an object is defined by a macro that looks like this:

Def i neOb key,  <arguments>
where key  is a unique numeric identifier of the object, and other arguments are whatever the application calls for:
parameters, indices, function pointers and so on. (There can be a generalization of this format, where an object’s key is
not a part of the definition, but rather can be calculated at assembly time based on object’s content, i.e.,
<arguments>. Let’s just note that it can be done and go on with our simpler representation.)

For the example demonstrating the techniques, let’s take the following table:

Labels A1…A4 are not needed other than for our reference.

St ar t Locat eTabl e MACRO _t abl e
__Pass SET __Pass+1
 I F __Pass=2

ORG $- Mi nOf f set
_t abl e:
__Def aul t Tabl eName SET _t abl e
 ENDI F

ENDM

Locat eEl ement  MACRO _of f set ,  _val ue
 I F __Pass=1

Mi ni mum Mi nOf f set ,  _of f set
Maxi mum MaxOf f set ,  _of f set

 ENDI F
 I F __Pass=2
      ORG __Def aul t Tabl eName + _of f set
      DC  _val ue
 ENDI F
 ENDM

ObTabl e:
A2:     Def i neOb 11,  <arguments1>
A1:     Def i neOb  9,  <arguments3>
A4:     Def i neOb 27,  <arguments2>
A3:     Def i neOb 24,  <arguments4>
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Observe that the sparse table from our previous example is also the lookup table for the table of objects ObTabl e. But
now it contains only data that can be calculated from the ObTabl e, so it potentially can be hidden from the
application programmer. When the ObTabl e changes, so does the lookup table, but it will be transparent to the user!

An approach to implementation
One can observe that in the ObTabl e, the invocations of Def i neOb macro are in one-to-one correspondence with
the invocations of the Locat eEl ement  macros of our implementation of the standalone sparse table. The obvious
reason for this is that significant elements of the lookup table are in one-to-one correspondence with the objects they
reference. So, our natural plan is to reuse the general appearance of the sparse (lookup) table allocation.

To do so, we plan to create an “extended”  Def i neOb macro, Ext Def i neOb,  to combine macros Def i neOb and
Locat eEl ement , i.e., to define both an object and an entry of the lookup table.

Below is our target implementation:

To generate lookup table (named here LookupForObTable), we may use the same prefix and suffix code (underlined)
as before, for the stand-alone sparse table.

Implementation: Method 1
Ext Def i neOb must allocate the object and make its address known. This, of course, needs to be done only once, and
the first pass is a natural place to do it. Then, the already defined addresses of objects are used in Locat eEl ement
invoked in both passes. To uniquely name an object’s starting point, we can use its key concatenated with a standard
base name. Now we are in a position to define our Ext Def i neOb macro:

(The labels of the objects are ObPosi t i on_9, etc.)
Thus, in Pass 1, Def i neOb allocates objects and Locat eEl ement  calculates Mi nOf f set  and MaxOf f set .
In Pass 2, Locat eEl ement  generates the lookup table.

Test drive
Let’s compare the manually created lookup table against the automatically generated one. The original table of objects
and the corresponding lookup table created manually are shown on the left and the automatically generated lookup
table, on the right.

ObTabl e:
Pr epar eLocat eTabl e
REPT 2
St ar t Locat eTabl e LookupFor ObTabl e

      Ext Def i neOb 11,  <arguments1>
      Ext Def i neOb 27,  <arguments2>
      Ext Def i neOb  9,  <arguments3>
      Ext Def i neOb 24,  <arguments4>

ENDR
EndLocat eTabl e

Ext Def i neOb MACRO key,  <arguments>
I F __Pass=1

ObPosi t i on_&key:
     Def i neOb key,  <arguments>

      ENDI F
           Locat eEl ement  key,
ObPosi t i on_&key
            ENDM
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ObTabl e:
A2:     Def i neOb 11,  <arguments1>
A1:     Def i neOb  9,  <arguments3>
A4:     Def i neOb 27,  <arguments2>
A3:     Def i neOb 24,  <arguments4>

LookupFor ObTabl e:
  DC 0, 0, 0, 0, 0, 0, 0, 0, 0
  DC A1, 0, A2, 0, 0, 0, 0, 0, 0
  DC 0, 0, 0, 0, 0, 0, A3, 0, 0, A4, 0, 0, 0, 0

ObTabl e:
ObPosi t i on_11:   Def i neOb 11,  <arguments1>
ObPosi t i on_9:    Def i neOb  9,  <arguments3>
ObPosi t i on_27:   Def i neOb 27,  <arguments2>
ObPosi t i on_24:   Def i neOb 24,  <arguments4>

ORG $- 9
LookupFor ObTabl e:

ORG LookupFor ObTabl e+11
DC ObPosi t i on_11
ORG LookupFor ObTabl e+9
DC ObPosi t i on_9
ORG LookupFor ObTabl e+27
DC ObPosi t i on_27
ORG LookupFor ObTabl e+24
DC ObPosi t i on_24
ORG LookupFor ObTabl e+27+1

Implementation: Method 2
Let’s consider a variation of the method just described; then we will compare the two.

Instead of labeling every object individually, we will reference an object by the ordinal number of its appearance in the
table of objects. To do so, we enter lookup table elements as before. If I t emNum counts the current number of objects,
starting with 0 on each of the two passes then the following macro is a solution.

Of course, for proper counting, we need to add the line
 I t emNum SET 0
to the macro St ar t Locat eTabl e.

In this version, lookup table entries reference actions by index in ObTable rather than by pointer.

Comparison of method 1 and method 2
Method 1 requires a fairly advanced macro Assembler: It must support string catenation and perhaps (depending on
application) early evaluation of arguments. None of this is required by method 2, so if it solves the problem, it should
generally be the choice.

There is a case, though, where method 2 doesn’ t work, and method 1 does. This is a pretty odd case of objects of
variable length (e.g., objects containing a text string). Indeed, the assumption behind method 2 is that an object can be
referenced by its number, and it implies constant object length. Since method 1 references an object by its address, it is
free from this limitation.

Summary of our achievements
1. We do not enter the lookup table manually; the Assembler builds it for us automatically.
2. Automatically built lookup table is more ROM-efficient than the one entered manually.
3. Item 1 not only saves us typing; it saves much more in code maintenance.
4. The macros we came up with depend very little on the example at hand; they can be reused almost 1:1 in different

circumstances.

Ext Def i neOb MACRO key,  <arguments>
   I F __Pass=1
     Def i neOb key,  <arguments>
   ENDI F
     Locat eEl ement  key,  I t emNum
I t emNum   SET I t emNum + 1 ; count  cur r ent  number
           ENDM
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5. These macros do not depend on the target machine instruction set, so portability issues have to do only with
differences in macro languages among assemblers.

ROM saving improvements – splitting the key
There is a way to save significant amount of ROM by replacing single-step search using lookup table by a two-step
search. The idea is to split the search key into two parts of about equal length, called primary and secondary keys
respectively. E.g., for our example,

9 = 01001B à  (010B, 01B) = (2,1)
11=01011B à  (010B, 11B) = (2,3)
24=11000B à  (110B, 00B) = (6,0)
27=11011B à  (110B, 11B) = (6,3)

Then lookup table search is done on the first (primary) part of the key using the (exponentially) smaller lookup table,
which we will call primary lookup table. The latter references  (exponentially) smaller secondary lookup tables, one
per one existing primary key. The secondary tables reference the original objects. In our example, the primary table is

TableP = {0, 0, Table2, 0, 0, 0, Table6, 0}

referencing the following secondary tables for primary keys 2 and 6:

Table2 = {0, A1, 0, A2}
Table6 = {A3, 0, 0, A4}.

Merging separate tables
Separate tables can be intertwined so that significant entries of one table fall in the “holes”  of other tables (grayed in
the illustration below). This can be achieved by moving tables’  origins and allocating one table at a time when possible.
The assembler must be good at memory/swap file management, so there are certain requirements to the host computer
platform. Assembly may take noticeable time. Macroassembler implementation produces (without print controls) a
tremendous listing file.

Target implementation is shown to the right. A guessed large repetition number is required to provide for iterative
process of moving tables’  origins. Other than that, the application programmer sees no differences in her table of
objects.

A sketch of implementation
A possible implementation consists of a two-pass process followed by an iterative process.
The two-pass process allocates the table of objects and the primary lookup table ala simple single-level lookup table
generation. In addition, min and max offsets of all secondary lookup tables are calculated.

Note 1: since the primary table contains references to the lookup tables that are not yet allocated, the
assembler must support forward references, so single-pass assemblers will not do. (A different implementation is
possible though.)

TableP:
0

Previous
data or

1 Table2 code
2 Table2 0
3 1 A1 Table6
4 2 0 A3
5 3 A2 1
6 Table6 2
7 3 A4

Subsequent data or code

ObTabl e:
Pr epar eLocat eTabl e
REPT 100000 ; r eal l y  l ar ge number
St ar t Locat eTabl e LookupFor ObTabl e

      Ext Def i neOb 11,  <arguments1>
      Ext Def i neOb 27,  <arguments2>
      Ext Def i neOb  9,  <arguments3>
      Ext Def i neOb 24,  <arguments4>

ENDR
EndLocat eTabl e
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Note 2: care must be taken not to attempt to allocate the same entry of the primary table more than once (since
they appear multiple times during a scan of the message table).

The iterative process:
1. shifts the next prospective allocation position of remaining secondary tables
2. for each secondary table checks whether it has collisions with already allocated tables
3. if a “good”  secondary table is found, it is allocated at the current shift offset from the common origin and marked as
allocated. If no more tables remain, end, otherwise, repeat the process.

Some caveats:
1. For the iterative process, the REPT statement must have sufficiently large number. Experimentation is required as

well as error control (not all tables allocated after all assembler passes are over).
2. To avoid empty passes (after all tables are allocated) use EXITR or equivalent (whenever available) to exit the re-

scanning. Otherwise it translates to increased assembly time.

An option for high-level languages and simpler assemblers
Tricks with macros shown here are a serendipitous by-product of macro facilities of good assemblers. The resulting
code produces enormously long listing file with very spare occurrences of code-generating lines. Usually, thorough
listing control statements are advised.

Consistent solutions for high-level languages are available with a tool called ������������������������ (for UNIfied MAcro
Language). It handles the static initialization tasks independently of the target language. (Please, visit
www.macroexpressions.com.)  It allows to:
• Perform complex compile-time configuration
• Reduce maintenance complexity of your code
• Put in ROM what you had to configure in runtime before.
• Reduce memory requirements of your project

Additionally, it allows to:
• Do more sophisticated arithmetic on parameters at compile time
• Export and share parameters between different languages (e.g., between C, FORTRAN, Assembler and the make

utility)

Conclusion
In this paper we discussed just one problem of static initialization of constant tables. We found a readable and
maintainable ways of coding them. We were able to save some ROM along the way.

While doing so we found that high-level languages lack features we needed. We therefore resorted to an assembler, but
used only portable features of macro languages.

And finally:
1. Our macros depend very little on the example at hand; they can be reused almost 1:1 in different circumstances.
2. These macros do not depend on the target machine instruction set, so portability issues have to do only with

differences in macro languages among assemblers.


